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ABSTRACT 

A high-aspect-ratio planing surface gliding on a 

stream of an infinitely deep, incompressible, inviscid and 

gravity-free fluid is treated. This complicated problem is 

decomposed into two relatively simpler boundary-value 

problems. 

The near-field boundary-value problem is valid only in 

the neighborhood of the planing surface. The problem is 

solved by the classic hodograph method. The second-order 

inner problem is also shown to be a plane, irrotational 

flow and the solution is obtained by following the same 

procedure as given in the first-order inner solution. 

The far-field boundary-value problem is valid only 

far away from the planing surface. The first-order outer 

solution is shown to be a trivial uniform flow. The outer 

velocity potential is defined in the whole space by har- 

monic continuation. The second-order solution is then 

shown to be similar to a lifting line solution. 

The unknown strength of singularities is obtained by 

matching of the velocity potential. Then, a matching of 

the free-surface deflection provides a height reference for 

the planing surface. The location of ehe planing surface 

with respect to the undisturbed free surface is uniquely 

defined. 

In order to obtain a unique second-order solution, it 

is necessary to solve the third-order outer solution. The 

detail of this solution is presented. 

11 



A numerical solution for a planing plate of arbitrary 

angle of attack is presented.  A downwash correction is 

also included. 

It is shown mathematically that the present theory 

can be applied to V-shape or general shape planing surfaces 

with curvature in the spanwise direction. 

111 



CONTENTS 

ABSTRACT, 

SYMBOLS. . 

CHAPTER 

I. 

II. 

Ill, 

IV. 

Page 

ii 

vi 

INTRODUCTION 

1. Introduction and Review  1 
2. Scope and Nature of the Solution  5 

FORMULATION OF THE PROBLEM 

1. Statement of the Problem  8 
2. Boundary-Value Problem for the 

Planing Plate ,  9 
3. The Far-Field Boundary-Value Problem... 15 
4. The Near-Field Boundary-Value Problem.. 18 

FIRST-ORDER SOLUTION 

1. First-Order Inner Solution  24 
2. First-Order Outer Solution  33 
3. First-Order Matching  36 

SECOND-ORDER SOLUTION 

1. Second-Order Outer Solution.....  40 
2. Intermediate Step Matching  45 
3. Second-Order Inner Solution  49 
4. Second-Order Matching  57 

FREE-SURFACE MATCHING 

1. Introduction  60 
2. First-Order Free-Surface Matching  61 

A. Near-Field Free-Surface Solution... 61 
B. Far-Field Free-Surface Solution.... 62 
C. First-Order Free-Surface Matching.. 63 

3. Second-Order Outer Free-Surface 
Solution  64 

4. Intermediate Free-Surface Matching  65 
5. Second-Order Inner-Surface Solution.... 67 
6. Second-Order Free-Surface Matching  67 

IV 



CONTENTS (CONT'D) 

Page 
VI.     HYDRODYNAMIC LIFT CALCULATION 

1. Chord Length of the Planing Surface....  69 
A. First-Order Chord Length Expression 69 
B. Second-Order Chord Length 

Expression  70 
2. Wetted Length of the Planing-Surface... 70 
3. Jet Direction  71 
4. Lift Force  72 

A. First"Order Lift Force   73 
B. Second-Order Lift Force   74 

5. First-Order Numerical Calculation   75 
A. Cusp Shape Planing Plate   77 
B. Elliptical Shape Planing Plate   77 

6. Second-Order Numerical Calculation   86 

VII.    THIRD-ORDER OUTER SOLUTION 

1. Introduction   90 
2. Third-Order Outer Boundary-Value 

Problem  90 
3. Third-Order Outer Solution  91 
4. Intermediate Velocity Potential 

Matching  94 
5. Third-Order Free-Surface Expression.... 98 

VIII.    WEDGE SHAPE PLANING SURFACE 

1. Introduction  101 
2. Formulation of the Problem  101 
3. Far-Field Boundary-Value Problem and 

Solution  103 
4. Near-Field boundary-Value Problem and 

Solution  103 
5. General-Shape Planing Surface  105 

IX.    CONCLUSION  108 

REFERENCES  Ill 

APPENDICES  114 

v 



SYMBOLS 

Primed variables are dimensional; unprimed variables are 

dimensionless 

A0,A. constants in inversion formula 

AR aspect-ratio 

a0/a1 jet thickness(outer variables) 

a* =a0+a1 

b-jb., jet in emplane 

b* =b0+b1 

c.jC- stagnation point in C-plane 

c* =c0+c1 

F-,?^ complex potential 

H height of the trailing edge above the 
undisturbed free surface (inner) 

h height of the trailing edge above the 
undisturbed free surface (outer) 

L local chord length (inner) 

I local chord length (outer) 

0 1 constants 

N unit vector in a plane z=constant,normal 
to body contour in that cross-section 

N ,N, free-surface elevation (inner) 

p pressure 

p^ atmospheric pressure 

Rn,R1 constants 

Sf free-surface 
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I. INTRODUCTION 

I. 1. Introduction and Review 

With the appearance of seaplanes and high speed 

planing boats, the problems associated with planing surfaces 

became practical problems.  It is interesting to note that 

the first experiment with a flat planing surface was carried 

out in 1912, which was followed by a series of both theoreti- 

cal and experimental investigations. 

At rest and low forward speeds the planing boat is 

supported by buoyancy force. As speed increases, the center 

of gravity gradually begins to rise. The center of pressure 

on ti. bottom shifts toward the nose and increases the trim 

by the stern. With further increase in the speed, the wetted 

area decreases, the mean draft of the hull becomes so slight 

that most of its weight is supported by the dynamic lift 
2 

acting on its bottom, and the hydrostatic force is very small. 

This condition is called planing  and the bottom surface which 

is in contact with water is called the planing  surface. 
3 

Wagner,  in his fundamental paper, showed that for infini- 

tely small angles of attack, with irrotational and gravity- 

free motion, the flow on the lower surface of a planing 

surface is comparable with that on the lower surface of an 

airfoil.  The lift of a planing surface is approximately half 

as great as that of an infinitely thin airfoil whose plan 

4 5 6 corresponds to the wetted surface.  Sottorf ' and Sambraus 



2 

indicated A  satisfactory agreement for moderately small 

males of attack between their test data on flat planing sur- 

faces and Wagner's theory.  However, Wagner's method is approx- 

imate ard, strictly, only applies when the angle of incidence 

of the gliding plate to the strear» is moderately small; more- 

over, his solution requires that the direction of the jet or 

spray which is formed should be parallel to the length of 

the plate.  In the middle 1930^, A. E. Green ' presented 

several papers on this subject.  He treated a two dimensional 

plate gliding on the surface ,>f a gravity-free stream of 

infinite depth. He was able to obtain a complete solution 

of a two dimensional gravity-free planing-plate problem, 

satisfying the non-linear free-surface boundary conditions 

exactly. 

9 However, his solution is not unique.  There is another 

anomaly in Wagner's and Green's theories of infinitely deep 

wacer: their theories imply that the free-surface elevation 

infinitely far upstream and downstream is depressed an 

infinite amount. 

The principal difficulty of a free surface problem is 

that both the dynamic and kinematic free-surface boundary 

conditions are non-linear.  Worse than that,the free 

surface on which the conditions are to be applied is not 

known a  priori;   it has to be found as part of the problem 

solution.  To overcome this difficulty, another approach 

is found in the literature.  Assume the disturbance is 



small; then the problem can be linearized. It is assumed that 

the error is of high order if the free surface boundary 

conditions and the body condition are applied on the undisturb- 

äd free surface instead of on actual position.« of free surface 

and body surface. Then the higher order terras in the free 

surface boundary conditions are neglected compared to the 

linear term.  In this way the two dimensional boundary-value 

problem is reduced to an integral equation which was first 

solved by Sretensky# later by Maruo  and Cumberbatch. 

Lamb  considered the two dimensional flow due to the appli- 

cation of a pressure distribution on the surface of a stream. 

He computed two simple pressure distributions for which the 

integrals can be evaluated to give the shape of the planing 

surface. Such linearized solutions give a good approximation 

to the expected physical behavior, except in the neighborhood 

of the plate, whera the flow near the stagnation point and 

the spray sheet can not be regarded as small perturbations 

of the uniform stream. 

14      15 
Rispin  and Wu  used the singular perturbation method 

to Folve the two dimensional non-linear planing problem by 

including gravity effects. They obtained a complete solution 

which includes an inner expansion and an outer expansion. 

Both anomalies in Wagner's and Green's classic solutions 

were removed. 

In the experimental approach, Shoemaker  made a test 



for V-shaped as well as flat-plate planing surfaces. Korvin- 

17 
Kroukovsky  gavt an empirical formula for lift calculation. 

13 19 
Shuford  "  gave a review of planing theory and experiment 

of rectangular flat plates.  Using the semi-empirical formula, 

the effects of cross section and plan form were included. 

Progress in developing a three dimensional theoretical 

20 approach is rather slow. Using linearized theory, Maruo 

obtained an approximate solution from the integral equation 

for high-and low-aspect-ratio planing-surface problems. 

A low-aspect-ratio planing surface has been treated as a 

21 slender body by Tulin,  without matched expansions and by 

22 
Ogilvie,  with matched expansions. 

A low-aspect-ratio planing surface is relatively ineffi- 

cient in producing lift force; more area has to be provided 

for a given lift, with a resulting penalty in lift-drag ratio 

compared to that of a high-aspect-ratio surface such as a 

23 hydrofoil.  Clement  proposed a new plan rorm with a re- 

entrant step in his planing boat design.  Brown and Van 

24 Dyck  made an experimental investigation on this high- 

aspect-ratio re-entrant step planing surface, with an encoura- 

25 
ging result.  Current development of practical stabilizers 

is proceeding rapidly enough that within a few years a high- 

aspect-ratio planing boat will become practical. 

In his experimental studies on a rectangular-plan-form, 

26 
high-aspect-ratio, planing plate, Mottard  found that an 



instability quite similar to the flutter of an airfoil takes 

place even if only a single degree of freedom, such as heave 

motion, is present. This is a rather interesting result. 

In aerodynamics, the occurrence of flutter normally requires 
I 27 
I that two vibrational degrees of freedom be involved. Ogilvie 
I 
f 
i linearized the lifting-surface problem in the manner of 

f Wagner and solved this two dimensional hydrodynamic problem 

I in the presence of heave motion. Le obtained a parameter v, 

I a reduced frequency, which characterized the occurrence of 
t 

instability. His theoretical result agrees very well with 

Mottard's experimental data. In order to solve a three 

dimensional instability problem, a three dimensional steady 

state hydrodynamic problem has to be solved first. This is 

the aim of the present work. 

I. 2. Scope and Nature of the Solution 

The trailing edge at the step of a planing boat is a 

straight line. The contours of the bottom lines of the 

planing surface in the immediate neighborhood of the step 

closely approximate those of a flat plate. As the speed 

of the planing surface increases, the wetted-aspect-ratio, 

AR, increases rapidly.  The hydrostatic force and friction 

force become negligible compared to the increased hydro- 

dynamic force.  In the present study, only the limiting 

high-speed case of inviscid flow will be considered, that 

is, the effects of gravity and viscosity are neglected. 



In order to apply the hodograph method, a planing surface 

without camber in the longitudinal direction is considered. 

Let the aspect-ratio AR be defined as 

2 
p*  _    Span  ^   Span  

Wetted Planing Area    Mean Wetted Chord Length 

For a high-aspect ratio planing surface, it is implied 

that the maximum dimension in the z direction is much 

greater than the maximum dimension in the cross-sections. 

Then a small parameter c can be defined as the inverse of 

high-aspect ratio: 

1  . Mean Wetted Chord Length 
AR    •— -   Span 

As aspect-ratio AR becomes larger and larger, the span 

grows bigger and bigger if the mean wetted  length is fixed. 

At its limit as AR approaches infinity, the span approaches 

infinity.  For an infinite span the flow will be two 

dimensional. This is exactly the lowest-order near-field 

description.  The characteristic length will be the chord 

length at each section.  On the other hand if e becomes 

smaller and smaller, the scale of mean wetted length becomes 

smaller and smaller if the span is fixed.    At its limit 

as e approaches zero.- the planing surface shrinks to a line 

and uniform flow is recovered.  This is exactly the low- 

est-order far-field description.  The characteristic 



length will be the span. There are two different reference 

length scales working at the same time.  It suggests that a 

singular perturbation method can be applied to solve this 

prob Ion. 

In the present work, the method of matched asymptotic 

expansions is applied to solve a high-aspect-ratio planing 

surface problem. The full boundary-value problem is 

decomposed into near-field and far-field boundary-value 

problems. The first-order near-field problem with respect 

to the small parameter £ is found to be a plane irrotational- 

flow problem. The solution is obtained by the hodograph 

method. The first-order outer solution represents a 

uniform stream. The second-order inner problem is shown 

to be a plane irrotational-flow problem again. The 

second-order outer problem is shown to be similar to the 

28 lifting line problem. Following the matching principle 

as outlined by Van Dyke, unknown parameters in the near- 

and far-field problem are determined. Finally, a unique 

solution is obtained through matching of the free-surface 

deformation. The depth of submergence can thus be properly 

defined.  The anomaly in the Wagner's and Green's gravity- 

free infinite depth solution is thus removed by the present 

work.  Three dimensional effects are shown to provide a 

height reference. Thus present theory is applicable for 

heavy loading as well as light loading on the planing surface. 



II. FORMULATION OF THE PROBLEM 

II. 1. Statement of the Problem 

The problem treated here is a three dimensional flow 

generated by a high-aspect-ratio planing surface gliding with 

a constant speed U' at an arbitrary angle on the free surface 

of an infinitely deep weightless fluid.  The fluid is assumed 

to be incompressible and inviscid and the flow irrotational. 

Instead of a planing surface moving on calm water, a uniform 

stream of speed U* at infinity in the direction of positive 

x-axis is superimposed. Then a steady motion is obtained. 

Take the coordinate system with the origin on the undisturbed 

free surface and choose the x-axis in the direction of the 

uniform stream.  The positive y-axis is taken vertically 

upwards and the z-axis is perpendicular to the xy-plane as 

shown in Figure 2.1. 

Let the span be b* and the planing surface located 

in the segment |z| £ b'/Z. Let the chord length of the 

planing surface be «-'(z1). The function i'Cz') must be 

continuous and  have a continuous derivative, at the tip as 

elsewhere; otherwise singularities will occur and the 

28 region near the tips will need a special treatment. 

Let the angle of incidence be a, the aspect ratio of the 

planing surface be AR, and the small parameter be e, which 

is the inverse of the aspect ratio.  Let the vertical 

8 



distance between the trailing edge and the undisturbed 

free-surface level be hMz')- To simplify the analysis, 

it is assumed here that the trailing edge is a straight hori- 

zontal line. This assumption implies that h* is independent 

of z. Therefore the uncambered planing surface becomes a 

planing plate. In Chapter 8, this restriction will be 

relaxed so that the bottom of the planing surface can be 

V-shaped or even curved in the spanwise direction. 

Assume that the angle of incidence a, the depth of 

submergence h' and the shape of the chord length distri- 

bution i'Cz') are given. The solution of the hydrodynamic 

problem of the planing surface is tc be determined. 

II. 2. Boundary Value Problem for the Planing Plate 

The fluid is assumed to be ideal and the flow irrota- 

tional. There exists a velocity potential (J)'(x* ,y'»z') 

which satisfies the Laplace equation 

2 
(L)    V {j)' = 0       in the fluid region 

Assume that the free surface deflection can be specified 

by the equation 

y' = n'Cx'/Z1)    on the free surface Sf 
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The function V is unknown; it is a part of the problem 

to be solved. 

There are two conditions to be satisfied on the free 

surface. Let the velocity be the positive gradient of 

the velocity potential, q" = V^', where q' is the velocity 

vector. The first condition is called the dynamic 

boundary condition.  It states that the pressure is constant 

on the free surface, equal to the atmospheric pressure: 

pMx'^'U'^M^z') = pj      on Sf 

The Bernoulli equation gives 

*. + lui? +*;? +*;?) -^ + |ü' 

where p^ is the atmospheric pressure, p* is the local 

pressure xn  the fluid, p' is the density of the fluid. An 

assumption is made that no disturbance exists far upstream 

at infinity. On the free surface, the Bernoulli equation 

becomes: 

.2   A,2   „,2     2 
nn  C (Fl)   *'f + *;f + «Pi- = 0'        on S 

The second condition on the free surface is called 



t 
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the kinematic boundary condition. It states that a 

particle once in the free surface remains in the free 

surface. Mathematically, it can be stateds 

ö~(Sf) = -JLu.-tx'^z«) - y'l =0   on Sf 

where =r denotes the substantial derivative. The above Ot 

equation gives: 

(F2)  ^.n;, - <^, + (t>;,n;. =0   on sff 

Equations (Fl) and (F2) are two non-linear conditions to 

be satisfied on an unknown boundary Sf 

Next, a body boundary condition must be satisfied. 

A body surface might be defined by the equation 

s' = s« (x'^z1) + y» = 0 

The kinematic boundary condition on the body would be 

rx, x'    ^    ^z' z' 

For the planing plate, for which: 
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s' = x" tan a + y* s= 0, 

tne body condition is 

(B)   4»'., sin a + <j)', cos a = 0   on the plate 
x y 

In airfoil theory, a Kutta condition is applied to 

give a finite velocity at the trailing edge.  In the planing 

problem, this condition requires that the flow separates 

smoothly from the the trailing edge of the planing surface. 

Finally, there is a radiation condition to be satisfied 

to guarantee a unique solution. This condition states that 

there is no disturbance far upstream. 

The planing plate problem is thus mathematically 

formulated. The governing equation is the Laplace equation 

subject to two free-surface boundary conditions, a body 

condition and a radiation condition. 

It is more convenient to work on the problem by making 

the variables and the equations dimensionless. 

Let the span be normalized to be of length 2 and 

located in the segment \z\  £ 1. And define the following 

variables : 

b = bV2 = 2 

x'     /     Y1      '       z' 
x,y,z = gnrrj      bVI        bV2 
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q = -gr {u,v,w =-,,-, , -,) 

n'       h1       z' n - b72 ' h = bV? ' £ = bV^ 

The full boundary-value problem in dimensionless form 

becomes: 

(L)  4  + 4   + (j,  = o in the fluid region (2.1) 

(Fl)  (l)x
2 + 4.y

2 + <j)z
2 = 1 on Sf (2.2) 

(F2) *xnx - <|.y + *znz = 0 on sf {2^ 

(B)  «fi^sin a + 4 cos a = 0 on plate (2.4) X y 

(R)   ^x = i  ;  «fy = *z = 0 as x-^-», y-*-«     (2.5) 

Now, consider the flow field far away from the planing 

plate.  There is an incident flow which, at infinity, is 

uniform in the x-direction.  In the absence of the bodv, the 

velocity potential is x. As e-»-0, the body shrinks to a line 

normal to the incident flow, so the first term in the far 
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lield description represents simply a uniform stream,upon 

which a line of higher order singularities is superimposed. 

On the other hand, consider the flow field in the neigh- 

borhood of the planing plate.  The flow in the whole vicinity 

or the pi ining surface can not be regarded as a small 

perturbation of the uniform stream for arbitrary angle a 

As aspect-ratio AR approaches infinity, the flow in the 

near field acts as if £ is fixed and the scale of span b 

approaches infinity at each section.  In this sense, it is 

similar to the flow of infinite span and the flow field 

is two dimensional to the lowest order.  So the singular 

perturbation method can be applied to reduce the original 

complicated free-surface problem into two relatively 

simpler problems. The outer solution is valid only far 

away from the planing surface, while the inner solution 

is valid only near the planing surface. An appr>ximate 
* 

solution, valid everywhere, in the form of a power series 

in e, will be obtained by calculating successive solutions 

of the outer and inner problems and matching them according 

29 to the matching principle: 

m-term inner expansion cf (n-term outer expansion) 

= n-term outer expansion of (m-term inner expansion). (2.6) 

* The power series contains "logarithmic" terms.  However. 
log c will be treated as 0 (1) as suggested by Van Dyke. ^ 
Otherwise the Van Dyke rule leads to contradictory results. 
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Here m and n are any two integers. This matching is 

necessary in order to obtain inner boundary conditions 

for the outer solution and vice versa. 

II. 3. The Far Field Boundary-Value Problem 

Let x, y, z be the outer variables which correspond 

to the natural variables. Let 4> be the velocity potential 

for the outer problem. The xz-plane is located on the 

undisturbed free surface with origin located at the 

intersection of the planing plate and the undisturbed free 

surface, as shown in Figure 2.2. The outer problem 

corresponds to the flow field far away from the plate. 

There the detail of the planing plate and the Kutta 

condition become meaningless, while the Laplace equation, 

dynamic and kinematic free-surface conditions, and 

radiation condition must still be satisfied. The boundary 

value problem for the far field can thus be formulated as 

following: 

(L)   ^ + (j)yy + <J>ZZ = 0    in fluid      (2.7) 

(Fl)       (|)x
2 +    (}.y

2 +    <l)z
2 = 1 on Sf (2.8) 

(F2)      <j.x nx -    <Dy +    4>z nz = 0    on sf (2>9) 

(R) 4>    = 1    ;    <l>    = <t>    = 0    as x-»-», y*-" (2.10) 
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Next, assume that there exists an asymptotic expansion 

valid in tht far field: 

<Hx,y,z) -v I <j>n{xfy,z;e) 
n=0 n (2.11) 

where  ♦n+1 = o(<l>n) 

as     E-^0 for fixed x,y,2 

Also assume the existence of a complementary asymptotic 

expansion for the free-surface elevation 

N 
n ^ S  n-(xfz;e) (2.12) 

n=0 n 

where  nn+l 
= 0(nn) 

as     E-»-0 for fixed x,z 

Substitute equations (2.11) and (2.12) into equations 

(2.7) - (2.10) to give: 

K  '       w0xx Oyy v0zz   Ylxx    lyy    Izz 

+ (})_   +  (|)0   + *o»- +....= 0 (2.13) Y2xx    2yy   T2zz 

{F1)  *0x2 + ^Oy2 + *0z2 + 2*0x*lx +2 V *ly 

+ 2*0z*lz + *lx2 + 2 *0x *2x + *ly2+ 2*0y*2y 

+ *lz2 ^ ^Oz^^ 2*lx*2x + 2*ly*2y 
+ 2*lz*2: 

+......= 1      on Sf       (2.14) 



18 

(F2)   *0xn0x ' ^Oy + *OznOZ 
+ *Oxnlx + ^Ox " ^y 

+ tQz^lz  + ♦iz^z + *lxnlx + ^Ox + ^Ox n2x 

' *2y + *Oz n22 + *lz nlz + *2z  ^z + •••=0 

on Sf (2.15) 

(R)   *0x + *lx+ <f2x - =1 

^Oy + ♦ly + *2y + •**•• = ü as x-«, y-^— (2.16) 

*0z + *lz + *2z + =0 

Equations (2.13) - (2.16) represent the mathematical 

expression for the outer boundary-value problem. 

II. 4. The Near Field Boundary-Value Problem 

In the neighborhood of a high-aspect ratio planing 

plate, the flow acts as if it is nearly two dimensional. 

In order to investigate details of this flow field, one 

thus shall have to become more and more nearsighted as 

the limit is approached. Mathematically the x-and y- 

coordinates have to be magnified in order to have flow 

variables change on a reasonable scale.  Let x, y, z 
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be the natural variables. 

Let X, Y# Z be the magnified inner variables with 

origin at the trailing edge, * the inner velocity potential. 

Then 

X = x + h cot a Y = y ^ h ,    z = z    (2.17a) 

as shown in Figure 2.3 

U' 

Figure 2.3 Inner Limit 

Also define 

H = £ H - - , N = J ' L = i e 
(2.17b) 

A physical quantity, such as velocity, should not be changed 
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by magnified variables; 

*x = 0(V 

The  inner problem is valid only in the neighborhood 

of the planing plate. The radiation condition is lost. 

However, the Laplace equation, dynamic and kinematic free- 

surface conditions, body boundary condition and the Kutta 

condition must still be true.  The boundary-value problem 

for the near field can thus be formulated as follows: 

(L)   ^ + $Yy + e2*zz =0    in fluid   (2.18) 

(PI)  ^ + ,2  + e2,2 = 1     onSf      ^^ 

(F2)  i $XNX -  $y + e$zNz =0 on Sf      (2>20) 

(B)  $ sin a + $ cos a = 0   on body    (2.21) 
A x 

(K)  The flow separates smoothly from the trailing 

edge 

Next assume the existence of the following asymptotic 

series with respect to e 
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N 

where    ♦ ^  = o{* ) (2.22a) 
n+i     n 

as       e * 0 for fixed X, Y, Z 

N 
N ^  ZN (X,Z;e) 

n=0n 

where    Nn+1 = o(Nn) 

as       E + 0 for fixed X, Z 

(2.22b) 

Substitute equations (2.22a) and (2.22b) into equations 

(2.18) - (2.21) to give: 

(L)    *0XX + *1XX + *2XX + *3XX + 

+*oyy + *iyY + *2Yy + *3YY 
+     (2.23) 

4 e?(*0ZZ + *1ZZ + $2ZZ +^-.) = 0 in fluid 

(F1)    $0X + 2$0X$1X + 2*0X*2X + ^X 
+ • • • ' 

+ *0Y + 2*0Y$1Y + *1Y +  2$0Y$2Y + *'*' 

+e2^0Z +  2$0Z$1Z +  $1Z +  2*0Z *2Z+'-")   =1 

on Sf      (2.24) 

(F2)   I ($0XN0X + $0XN1X + $1XN0X + $1XN1X 

+ $oxN2x + ••••) ~ ($oy + $
IY 

+ ^Y + SY +--") 

+ e{$ozNoz + $0ZN1Z + $1ZN0Z + $1ZN1Z 
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4 ;0ZN2Z + ••••'= 0 (2.25) 

(B)     (*0X + *1X +  *2X + ....)sin a + (t0y 

+ vly + *2Y +  )cos a = 0 on body   (2.26) 

This is the non-linear near-field surface problem. 

Now, consider the lowest order of this inner problem. 

According to the definition of asymptotic expansion, *ivx 

is of higher order than *oxx in equation (2.23) and can be 

discarded. Therefore the possible lowest-order Laplace 

equation is: 

2 
*0XX   *0YY   e  OZZ   U 

However, according to the definition, *ozz is of the 

same order as ^nyy and *0YY* Finally, it gives: 

(L)    *oxx + $0yy =0 in fluid     (2.27) 

Similar argument leads to the following boundary condi- 

tions. 

(Fl)     *0X2 + $0Y2 =1 on S f        (2.28) 

(F2)     $0XN0X " e$0Y = 0        0n Sf (2-29) 
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(B)    *_ sin a + <!•_ cos a = 0   on body    (2.30) 

This is the lowest-order inner boundary value problem, 

which will be called the flpst-ordep  inner problem  throughout 

the entire work. 



III. FIRST-ORDER SOLUTION 

III. 1. First-Order Inner Solution: 

The inner boundary-value problem was mathematically 

formulated in the previous chapter and then was expanded in 

an asymptotic series with respect to e.  To the first 

order the boundary value problem is: 

(L)    <I)0XX + *0YY  = 0 in fluid  (3.1) 

(F1)   *0X2 + *0Y2 = 1 on Sf     (3.2) 

(F2)    *0XN0X " e$0Y = 0 on Sf      (3.3) 

(B)    *_x gin ot + <I>  cos a = 0    on body   (3.4) 

(K)    Kutta Condition 

The governing differential equation is a two dimen- 

sional Laplace equation at each section.  The boundary 

conditions are all two dimensional.  Therefore, the first 

order inner problem concerns a plane irrotational flow. 

The dynamic boundary condition (Fl) states that the 

magnitude of the velocity on the free-surface is constant 

24 
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and known. The body condition (B) states that the direction 

of the flow on the body surface is known.  This is a free 

streamline problem and can be solved by the classical hodo- 

graph method. 

It is noted that Z coordinate appears only implicitly 

in this first-order inner problem.  It will be shown in the 

next chapter that the Z coordinate also appears only 

implicitly in the second order inner problem. Therefore, 

in order to stay with the conventional symbol, Z  will be 

defined as a complex variable Z=X+iY through the whole 

analysis. 

Experiments  indicate that near the planing surface 

the flow shown by tests presents a true jet or spray 

character; i.e., at some distance ahead of the planing 

body the water surface is practically undisturbed, while 

immediately forward of the planing body the water is thrown 

off in a spray.  In the region behind the planing body, 

there is no spray separating at the trailing edge at 

large planing speeds; the water flows off smoothly from 

the trailing edge. 

From this experimental observation, the first-order 

inner problem can be stated as following:  An infinitely 

long flat plate is held at an arbitrary angle a on the 

free surface of an otherwise uniform stream of an infinitely 

deep weightless fluid.  The plate is of length L.  The 
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origin is located at the trailing edge B which is at a 

depth H from the undisturbed free surface«  Y-axis is 

vertically upwards, X-axis is in the direction of uniform 

stream.  The plate is AB.  The flow cones from upstream 

infinity and divides along the stagnation streamline which 

branches off at the stagnation point C.  Above this 

streamline, the flow shoots off as a jet J.  Below this 

streamline, the flow separates smoothly from the trailing 

edge B as shown in Figure 2.3.  From equation (3.1) the 

velocity potential 4> (X,y) is harmonic and its conjugate 

t'0(X,Y) is the stream function.  Define the complex 

potential F0(Z) 

F0(Z) = <&0(X,Y) + i^'X^Y) 

Let W0(Z) be the derivative of F.CZ) with respect 

to Z: 

dFn(Zy 
W (7.)   =        =4>   - i#   =U -   iV 'V^    dZ    *0x   t OY  u0   zv0 

where Un and V are velocity components in the X and Y 

directions, respectively.  w0(
z) is called the complex 

velocity.  Both Fn(Z) and Wn(Z) are analytic functions. 

The dynamic free-surface condition (Fl) gives: 
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2    2 
V + V0 = ! on S. (3.5) 

The kinematic condition gives: 

e ^ " *ox" üo 
on S, (3.6) 

The body condition gives; 

Ü, 
= -tan a (3.7) 

The first-order inner problem is thus expressed in 

natural variables.  This problem will be transformed onto 

the lower half of the auxiliary c~plane as shown in Figure 

3.2. The problem is then solved in the ?;-plane and finally 

the solution is transformed back to the physical plane by 

the inversion formula. 

Let the potential function $0 be zero at C and the 

dividing streamline be 4^=0.  Consider the F0-plane shown 

in Figure 3.1.  IJ is the upstream free surface.  If 

an is the breadth of the jet at a great distance expressed 

in the outer variables, then the breadth in inner variables is 
a0 5 == _r. .  Along IJ, the stream function yQ  is 

U/   _   
Y0   e = 6, 
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The polygon in the F0-plane can now be transformed 

onto the lower half of C-plane.  Let A, ß correspond to 

C = -1, +1 respectively.  The chord length is represented 

by the segment |c! ^^ 1 on the real axis n = 0, where 

c.  =  r,  +  ir\.     Let J, C then be mapped onto J; = -b0,c0. 

The free surface is thus mapped onto the real axis too. 

The diagram of the C-plane is shown in Figure 3.1. The 

Schwarz-Christoffel transformation gives: 

dF0 = K ^ C0 
dc       C + b0 

Integration gives: 

Fo^ = wb0;c0) ^ - co - (bo+co) ^"v^o1   (3'8) 

7 32 This is Green's solution.  (See Milne-Thomson ) 

Next, define the mapping function H0(O 

H   U) f0   --        ,     &0     -   '-C0 (3.9) H0(l')       ^T        ii(b0+c0)     c+b0 

Then 

dFn ,_ 
wo(z(rJ) = -sr-= HoU)i (3-10) 

From equation (3.10), integration gives 
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0(C') 

The origin is located at the trailing edge to give the 

lower limit of the integral to be 1. The equation (3.11) 

relates the c-plane and the physical plane. The inner 

solution found in the c-plane will be transformed back 

to the physical plane by the equation (3.11)f which is 

called the inversion formula. 

The equations (3.5), (3.6), and (3.7) state that the 

flow is bounded by a straight rigid boundary (planing 

surface) and a curvilinear free streamline (free surface). 

The complete boundary can be transformed into a simple 

closed polygon by a Kirchhoff function. 

Define the complex variable Q. to be 

Q0 = - log(W0) = T0 + t0o (3.12a) 

Let q be the speed in the flow field.  Then 

Q0 = - log q - iarg W0 (3.12b) 

Equations (3.12a) and (3.12b) give 

2   -2Trt  n q - e  0 = 0 

0O + arg W0 = 0 
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On the free surface, q=l, which gives: 

1 - e~2T0 = 0 on Sf       (3.13a) 

On the body surface. 

G0 = - arg W0 = -a on CB        (3.13b) 

G. = IT - a on AC 

Next, express these boundary conditions on the real 

axis, n^O, of the c-plane. Equation (3.13) becomes: 

1 - e"2T0(C) = 0       (n=o,U|>i) 

(3.14) 
= { -a (n=o,c0<c<l) 

0      ^  a       (n=0,-l<5<c0) 

It is noted that the kinematic free-surface condition is 

automatically satisfied where the free surface on the 

physical plane is mapped onto the real axis in the 

segments |Cl >  1 of the ^-plane.  Equation (3.14) gives: 

So 

T0(S) = o {n=0,|e|>i) 

|w0l = 1 (n=0,U!>l)       {3„i5a) 
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And e0 = { T- a 
(n=ofc0<c<l) 
(n=0,-l<C<c0) 

(3.15b) 

At the stagnation point 

■I- 
w0( c0 ) = o (3.15c) 

The W0-plane is shown in Figure 3.2. The entire fluid region 

is mapped by W0(ZU)) into the region bounded by a unit half- 

circle and its diameter. The diameter is the image of the 

planing surface, on which the direction of the velocity 

vector is known, and the semi-circle is the image of the 

entire free surface, on which the magnitude of the velocity 

vector is known. Now, map the W0-plane onto the lower half 

of the C-plane by either of the following equivalent forms: 

W0(Z(C)) = e 
ta 

C-c, 

= e 

l-c0c+i/(l-c0
2) U2-l) 

.a l-V-£/(l-c0
2)U2-l) 

(3.16) 

~" 2 2 1/' 
/1-C  is defined as the branch of (l-c ) ' l  with its 

branch cut on the real ^-axis between (;=fl,-l, 

Equations (3.9), (3.11) and (3.16) give: 
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+ i/l-c0
Z  ^1 - ib0/l-c0

2  log(c+/c2-l) 

;-/? 2  ,w   3 

0 0 C+b0 (3.17) 

This is the inversion formula which gives Z as a function 

of C. 

There are three parameters a. , b^ , and c0 at each 

section, none of which has been determined yet aside from 

the facts that 

|c0| < 1 ; b0 > 1 

Equations (3.8) and (3.17) provide a complete first- 

order inner solution.  The three unknown parameters will 

be determined from matching to the far field problem. 

III. 2. First-Order Outer Solution 

Consider the flow field at a great distance from the 

planing surface, mathematically, a distance of order unity 

with respect to e. The boundary-value problem has been 

formulated in section II. 3. With the same kind of argument 

as given in section II.4, the first approximation for the 

outer problem is 
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^ ^Oxx +  *Oyy + *Ozz = 0 in fluid <3-18> 

(Fl) 4»0x
2 + ^0y

2 + *0z
2 =  1 on Sf (3.19) 

(F2)   *0xn0x " *0y + ♦02n0z = 0   0n Sf      (3-20) 

(R)    *0x = 1 ;  4»^ = ♦oz = 0   x*-m 
ux        "y   oz      y^-»       (3.21) 

The free-surface boundary conditions (Fl) and (F2} 

are applied on Sf which is unknown and is a part of the 

problem to be solved. To avoid this difficulty, it is 

assumed that Taylor series expansions exist for <bQ  at 

the neighborhood of n«. From (2.12), Sf is 

y = n(x,2) = HQ ■*■ ni + ^2* "" 

It is then assumed, for example, that: 

(})0x(x,n(x,z) ,z) = $0X(X,TI0,Z) + (n1+n2+ ...)(|>0 (X,TI0,Z) 

(n1+n2+...) 

+  _  *0Xyy(
X'Tl0'Z) + •••• 

However, it will be shown in the later part of this 
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section that the first term of the outer solution represents 

a uniform stream.  It gives the value o£ n0 to be zero. 

Therefore, it is assumed here that i0=0. To the first- 

order the free-surface conditions can be applied on the 

undisturbed free surface y=0 to give: 

(Fl)    <|.0x
2 + <|,0y

2 + <J.0z
2 = 1   on y=0       (3.22) 

(F2)    <t.0y = 0 on y=0       (3.23) 

For a high-aspect ratio planing surface, the outer 

problem corresponds to a planing surface of fixed span 

and vanishingly small chord length. As AR -► 00, the planing 

surface shrinks to a line. There is no disturbance far 

upstream. Therefore, it is plausible to assume that the 

outer problem can be linearized. This is confirmed in 

experiments  which show that at a small distance ahead 

of the planing body the water surface is practically 

undisturbed. 

This physical argument shows that the first order 

solution is a uniform stream. 

<j>0(x, y, z) = x (3.24) 

Mathematically, it can be shown that the equation (3.24) 
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satisfies all the first-order equations, (3.18) - (3.23) 

trivially. 

III. 3. First-Order Matching 

In the inner problem, the radiation condition is not 

considered.  On the other hand, the body condition is not 

considered for the far field solution.  These missing 

conditions can be recovered through the matching process, 

leading to a unified solution valid in the whole fluid 

region. 

Let m=l and n=l in the equation (2.6); 

1-term inner expansion of (1-term outer expansion) 

= 1-term outer expansion of (1-term inner expansion) 

(3.25) 

Each of these will now be obtained. 

Consider the inversion formula, AS  r, + <*>,  equation 

(3.17) gives: 

6o 
z ^ 7Tb~fe~) ^ as ,z' and lc| * 00   (3-26) 

This equation states that Z and C correspond to within 

a real scale factor at large distances from the planing 

surface.  This has a significant meaning.  In order to 

obtain the outer limit of the inner solution, one has to 



37 

work with a large value of Z which corresponds to the large 

value of c as expressed in (3.26). 

Let 

A0 a  T{b0+c0) 
(3.27) 

Far away from the planing surface, which corresponds to the 

outer limit of the inner problem, equation (3.17) gives: 

(see Appendix A) 

-t-oti z ^ A0e ""{(-CQ+t/l-c^U + logc (l+c0b0-ib0/l-c0
2) 

- iA 1 c^(b0log2 + ^2-llog(b0~^
2-l)) - c0 

- (l+c0b0)log(l+b0)} + 0(i) (3.28a) 

Recall that log C is treated as 0(1) as c approaches a 

large value. To the first term, this expression can be 

inverted, as follows: 

tot 
C  = 

A0{-cQ+i 
jmm       m    Z    +    0(log    Z) (3.28b) 

Now consider the one-term inner expansion.  Equation 

(3.8) gives: 

60 C+b0 
*0 = Re   {   TT(b0+c0)^ " c0 ' (b0+c0)lo^-b-^1} 
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Far away from the planing surfacer if (3.28) is used« this 

be cosies: 

/ 7 /       9 
V1   ^~cocos a + V

^'
C

Q 
sin öt)X +  {cQsin a + /l-c» cos a)Y 

+ O(log X) for large   |Z| 

In the outer variables,  it gives 

4>^   C - c.cos a + /l-cn
2sin a)^Cgt a 

+   (c0sin a + /l-cQ cos a)^~ 

.  «/I      x-rhcot a% + 0{log ) 

where h = OU)   = 0(e) 

The one-term outer limit of the one-term inner solution is 

1 / 5 $0 ^ — [{  - CQCOS a +/l-c0 sxn a)x +   (cQsin a 

+/l-c0
2cos a)y] (3.29) 

Next consider the inner limit of the outer solution. 

The one-term outer solv.tion is 

i.,0 (x, y, z) ^ x 

In terms of inner variables, this becomes 
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<(>_ ^ eX - eHcot a 

This is the one-term inner expansion of the one-term outer 

solution. To be matched to the expression in (3.29), it 

must be expressed in the same variables. Thus the one-term 

inner expansion of the one-term outer expansion is: 

♦o (xr yf z) -v x (3.30) 

Equations (3.25), (3.29) and (3.30) give: 

c- = - cos a (3.31) 

This was known to Green; however he aeeumed  it to be true. 



IV. SECOND-ORDER SOLUTION 

IV. I. Second-Order Outer Solution 

The boundary-value problem for the second-order outer 

solution can be obtained from equations (2.13) - (2.16) 

(L)    Uxx + ^lyy + Hzz =  0   in fluid    {A'l) 

(Fl)    2(4« d»,  + 4)« *,  + *„ <J», ) + 2n-. (<t>« ♦/» 4 '    w0xvlx   y0y*ly   ^Oz^lz'    'l^Oxy^Ox 

+ ^A  4>« + <!>«  «S'A ) = 0   on y=0      (4.2) Y0yy*0y  y0zyv0z J 

(F2)   *0xnlx + *lxn0x * ^ly + *0znl2 
+ *lznOz 

+ ^^Oxy^x ' ^^Oyy + ^""ozy^z = 0 

on y=0       (4.3) 

(R)    *lx = 0 ;  hY  - 4l2 - 0  x--       ^ ^ 

If the equation (3.24) is used, the free-surface 

boundary conditions become 

(Fl')  <{>lx (x,y,z) =0 on y=0       (4.2') 

(F2,)   *0xnlx + ^Ix^Ox - Hy  + *l2n0z = 0 

on y=0       (4.3') 

40 



41 

The equations (4.1), (4.2'), (4.3') and (4.4) constitute 

the second order boundary value problem. 

The equation (4.2') states that the velocity potential 

4», can be continued analytically into the upper half space as 

an odd function with respect to y=0.  The equation (4.1) 

states that the potential <{>, is a harmonic function. Up- 

stream of the planing surface, the potential $, can be 

required to satisfy: 

(j»1 (x, 0, 2) = 0 on y=0, x<0,  (4.5) 

In this domain, «K must be continuous at y-0. The function 

4). is thus defined in the entire space and has the following 

property 

<l>1  (x, y, z) = - <i>1  (x, -y, z) (4.6) 

It is this result which permits the outer problem of 

the planing surface to be reduced to an equivalent airfoil 

problem.  Downstream of the planing surface, equation (4.2") 

then becomes just the usual downstream condition for 

continuity of pressure across a vortex wake. The body 

condition is replaced by requiring the outer expansion to 

match with the inner problem.  The line of singularities 

is now located on the undisturbed free surface, and the 
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vortex sheet is assumed ho lie on the xz-plane which 

corresponds to the free surface at upstream infinity. 

The planing problem will thus be solved as if there 

were a vortex wake. Actually, there is none; instead there 

is a free-surface.  It is simply that the outer problem of 

the planing surface is mathematically equivalent to a 

well-studied airfoil problem. Concepts such as circulation 

25 have no place in the planing problem.   The fluid region 

is simply connected and the potential function is single 

valued. There is no circulation. Nevertheless, some of 

the terms and symbols of aerodynamics will be used in 

solving the problem. 

The planing surface can be represented by a line of 

singularities at x=0 along the z-axis in the unbounded 

fluid as e approaches zero. The strength of these 

singularities is still unknown. Since there exists a 

lift on the body, one must provide for the existence of 

singularities in the flow behind the body.  These are 

the usual wake vortices, which can be represented in 

terms of a dipole distribution of density y(x,z)   in tha 

xz-plane, with doublet axes normal to y=0 plane. 

The wake now is a surface of discontinuity; therefore 

the distribution of doublets must be extended to infinity 

over the wake surface W as well as over the planing 

surface S.  The span of the planing surface is located 

in the segment between z=-l,+l. The velocity potential 4), 

9 has the following form 
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<H 
f {x-r>)

2+y2+(z-c)^l -M^3/2 
)1(x,y,2)   = ■f^-j   dd 

^AilxV^z-U2!3/2      ^   i1[x2
+y2

+(2-C)2] 372 

(4.7) 

It can be shown that the equation (4.7) satisfies the 

Laplace equation and all the boundary conditions (4.1) - 

(4.4). The first integral represents a plane sheet of 

dipoles extending to infinity downstream. As shown in 

Appendix B, the dipole density is a function of the z 

variable only, Y=Y(Z). The second and third integrals 

represent discrete lines of vertical and horizontal dipoles, 

respectively. Higher order singularities, such as 

quadripoles, etc., need not be considered here for the 

second-order approximation.  Sources have been omitted, on 

the assumption that there is no generation of fluid in the 

body. 

The first integral can be integrated with respect to £ 

to give 

<b1{x,Y,z) 
r)2
u ,.2.   2 

J-lY  +(z-C 

+ JL.f MU)dC 

+ _x_/     LIU^ 
' ^J.x  tx2+y

2
+(z- 

[x'+y'+(z-02]1/2 
]dc 

C)2]3/2 (4.8) 
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The functions y {z),   \ {z),  and p(z) can be expanded into 

series which are asymptotically valid as e -* 0 

N 
Y(z) ^ I    yn(z;c) Yn+r

o{V 
n=i 

as e ■* 0 

N 
u(z) -v Z un(z;e) 

pn+ls=0^yn^ 
n=1 as e ^ 0 

N 
Z 

n=l 
X(z) % E An{z;e) 

Xn+l=o(An) 

as e -»• 0       (4.9) 

In the outer problem, as aspect-ratio AR approaches 

infinity, a uniform stream is recovered, and the dipole 

density eventually vanishes. Therefore, one has 

Y1(z) = o (1) 

^(z) = o (1) 

X^z)   = o (1) (4.10) 

Therefore, the two-term outer solution is 

vT1  Yi(i;) 
$o + *o ^x + ■&    —T 2[1 + ~i-i nr^ 
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y f1    ^U) 

x   f
1 ^U) 

^J.i [x2+y
2
+(2-C)

2l 

—2 3/2 dC 

372 ^ (4.11) 

IV. 2. Intermediate Step Matching 

Let m= 1 and n=2 in the equation (2.6) to give: 

2-t outer expansion of (1-t inner expansion) 

= 1-t inner expansion of (2-t outer expansion) 
(4.12) 

In order to find the former, procede as follows: 

For large £, the inversion formula (3.17) gives a two-term 

expansion: 

Z ^ AQ? + A0(e~
t'a - b0) log*; 

+ hQe"Lam0 -  iR0)   + 0(h for large  ?       (4.13a) 

where 

Mn = cn -   (l+bncn)   log(l+bn) 

R0 = b0/l-c0
2  log 2   +  /b0

2-l  /l-c0
2  log   [h^Jb?    1) 0 

(4.13b) 

Next, express J; in terms of Z to give 
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"^\'{e""" ^loq K'{*0' iRo)e"a + ^ 
(4.13c) 

one-term inner solution is given by equation (3.8).  Far 

away from the planing surface, equation (3-.8) gives: 

*o % Rc {Vl0 - (e"'a " V lo5|0 - e^a%-^o) 

- -o - (bo+c:o) logl0 
+ (bo+co) lo9(bo+co) 

+ 0(|)]} 

where A0, M«, and R« are all real constants. Next take the 

real part for large value of X to give 

>0 ^ X -  AQsina.tan-1 | " Go + 0(|) 

The two-term outer limit of the one-term inner expansion 

is thus 

-1 Y 
)0 ^ X - A0sina»tan  x ~ Go (4.14a) 

where 

G0 = AntMocos a " Rosina ~ cosa 

(b0-cosa) log (b0-cosa)] (4.14b) 
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Take outer variables 

, xiÜSOta _   sinatan-l y-h  _ 
0     e      0        x+hcota 0 

1- -1 v 
^ -( x ~ eA-sma tan  v + h cota - eG-) 

A constant K-, which is independent of space coordinates, 

added or subtracted from a velocity potential would not 

violate the conditions prescirbed for *n (Laplace 

equation and boundary conditions). 3o the two-ter» cuter 

expansion of the one-term inner expansion is: 

>Q  ^ - (x - cA0sina * tan" "^ 
+ h cota - eG0 - eK^) 

(4.15) 

The two-term outer expansion is given in (4.11). 

To take the ir^ner limit, this solution must be evaluated 

near the line of singularities. Then the integrals in 

(4.11) become divergent integrals. This difficulty is 

resolved by integration by part to give (see Appendix C) 
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+ JL._iL_ f HzLl .^1 dr 4',       2^  2/     ,   2^  2^.     ^2,1/2 de       C 
x  +y J_1lx +y +(2-c)   1   '       s (4.16) 

The strength of singularities is zero outside the planing 

body, which gives: 

Yj^U) = 0  ;  ^(±1) = 0  ; X^tl)   = 0 

Take inner variables 

4>0+ «K  -^     (eX -eH cot a)   - ^-(eY +cH) 

l4li)tan"1 (    eY+eH      ) ^TT tan     ^eX-eHcot a' 

7  d^  z-C 
-'-I 

,   (eY+eH)^!, (z) + (eX-eHcot a)^, (Z) 
+ ^ — i 5 5 ±  + o(eYl) 
^     (eX-eHcot a)z +   (eY+eH)^ ■L 

(4.17) 

The Cauchy Principal value is to be taken for the integral, 

The order of magnitude of Y, (z) with respect to e is 

not known yet.  However, one does know that Y-ifz) = o(l). 

Therefore, the one-term inner expansion of the two-term 

outer expansion is; 

W ^-^ot a)   - J^- tan ^ (^^S—) 

1  (ey+eH)M1(Z) + (eY-eHcot a)X1(Z) 

21T   (eX-eHcot a)2 + (eY+£H)^ 
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In the outer variables, this is : 

Y (z) 

o+ *i " x " ^r ^"^^ + ^i{z) +27xi(2)     (4-X8) 

From the equations (4.12), (4.15) and (4.18), matching gives 

Y1(z) = ZireA-sin a 

y1(z) = 0 

X^z)   = 0 

G0 + K0 - h cot a = 0 (4.19) 

The discrete lines of vertical and horizontal dipoles P1(Z) 

and \,(z)   are of higher-order than that of Yi(z)« SO 

Y1(Z) = 0(e) 

^(z) = X1(z) = o(e) 

(fi;L(x,y,2) * 0(e) (4.20) 

IV. 3. Second-Order Inner Solution 

From the first-order outer solution, $0=0(~-) as 

expected.  However, the definition of the asymptotic 

expansion only implies that $1=o{
<i'0).  The exact order of 

2 
magnitude of 4». is still unknown.  Therefore, e ^07" term 

must be included in the Laplace equation. 



50 

Next, use the save argument given in section II. 4. 

the possible second-order problems obtained fron the 

equations (2.23) - {2.26)  are included :ln the following: 

{L)       *ixx + *m+  *\zz*0 (4-21a> 

(F1)    2*0X*IX + 2V*1Y + C\z2 *  0 (4-21b) 

(F2>  *oxNix + *ixNox - e*iy + e2*ozN02 * 0  (4-21c) 

(B)     *iv8in a + *1YCO8 a " 0 (4,21d) 

Now, the order of *, will be estimated. There are 

two possible ways to do this. One is to assign every 

possible order of magnitude to $., then try to show that 

each assigned order of magnitude, except one, gives rise 

to a contradition among the Laplace equation and all the 

available boundary conditions. The exceptional case 

which is acceptable for each equation is thus the 

possible order of magnitude for $,. The second approach 

is to consider all the non-homogeneous equations. Determine 

the order of magnitude of non-homogeneous parts. The 

lowest one will be the possible order of *,. The nice 

thing about the method of matched expansions is that, if 

the order of magnitude is not correctly estimated, it 
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will show up autonatically in the later part during 

the matching performance. The second method will be 

used here to estimate *.. 

The available nonHhoncgeneous equations are 

'iXX   'lYY 

0(e) 

-e2* ozz (4.22a) 

♦l ♦l 

2*ox*ix + 2*0Y*iy 

0(1) 

e 'oz (4.22b) 

00XN1X + *1XN0X ' e*lY ' 'e *0ZN0Z (4.22c) 

Equation (4.17) gives: 

1-T. I. E. Of 2-T. 0. E. -v 0(eX) (4.22d) 

and 

2-T. I. E. Of 2-T. 0. E. ^ 0(eX) + 0(e2Y) (4.22e) 

The first term in the right hand side of (4.22e) is 

matched to inner solution *0 and the second term is 

matched to $,. Therefore, the equation (4.22e) gives 

«^ % O(e$0) (4.22f) 
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The kinematic free-surface condition (4.22c) vill be 

used to determine the free-surface deflection, therefore, it 

can only be used to determine the order of N,. From 

(4.22a), (4.22b}, and (4.22f), the lowest order for ♦, is 

^ = 0(1) (4.23) 

If equation (4.23) is used, the second-order inner 

problem becomes 

(L)    *1xx 
+ *1YY = 0 in fluid   (4.24a) 

(Fl)    2($0X*1X + *0Y*1Y) = 0     0n Sf       (4.24b) 

(F2)    $0XN1X +  $1XN0X " e*lY  = 0 0n Sf       (4-24c) 

(B)    $lxsin a + «I».„cos a = 0    on body    (4.24d) 

Instead of this boundary-value problem being solved 

directly, it will be combined with the first-order inner 

problem. The new boundary-value problem will be shown 

to have exactly the same forms as the first-order inner 

problem, and the solution obtained in the previous 
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chapter can thus be carried over directly to give the 

second-order inner solution. 

Consider the new boundary* value problem in which 

first-order ana second-order conditions are added: 

*0XX + *0Yy +  *1XX +  "^lYY * 0        in fluid (4.25a) 

♦OX2 + *3y2 + 2(*0X*1X + *0¥*1Y) = 1 on Sf   (4.25b) 

*oxNox " e*oy + ♦ox^'ix + *ixNox " e*iy = 0   (4.25c) 
on S_ 

*oxsin a + *0Ycos a + *,xsin a + *,yCos a = 0 (4.25d) 

on body 

2      2 Now, consider the equation (4.25b).  If *,x and $1Y 

are added to the left side of equation (4.25b), the effect 

will not be felt until the third approximation or higher. 

Therefore, without loss of accuracy to the second-order 

2      2 approximation, $,„ and $-Y can be added onto (4.25b); the 

same argument is applied on (4.25b) and (4.25c). One obtains: 

*     * 
(L)    *xx + $YY = 0 in fluid (4.26a) 

(Fl)   **x
2  + ^ = 1 on Sf    (4.26b) 
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* *    * 
(F2)    ^x Nx - e*y = ö on S#      (4.2fc) 

*       * 
(B)     *xsin a + *ycos a = 0     on boay (4.26d) 

* 
where       ♦ « *o "^ *1 

^ = N0 + Nl (4.27) 

This is the new boundary-value probIon. The governing 

differential equation is the two dimensional Laplace equation. 

All the boundary conditions are two dimensional. Therefore, 

the solution represents a plane irrotational flow. The method 

developed in the first-order inner solution can be applied 
* 

directly to this new problem. Once 4 is determined, the 

second-order potential *, can be obtained easily. 

In the first-order problem, a0, b0 and c0 represent the 

jet thickness, jet direction and the location of stagnation 

point on the z.-plane  respectively. Now due to the three 

dimensional effect, these values will be changed by a small 

amount. 

Let a, b, and c represent true values, assume the exist- 

ence of asymptotic expansions for a, b, and c 

N 
a -v En a^ 

an+i=c(aJ n-0 n ^1^ n    (4_23a) 
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b \h bn bn+l
,BO(bn) 

as e-»0 (4.28b) 

N 
C \h cn cn+l

=o{cn) 

as e->-0 (4.28c) 

* 
For the new boundary-value problem t , let 

a = a0 + a1 

b* = b0 + b1 

* 
c = c0 + ^ (4.29) 

* * 
Since 4 is a harmonic function, ts conjugate, ¥ , exists. 

* 
Let the analytic function F be the complex potential 

F*(z) = F0(Z) + F1(Z) = **(X,y) + i'i'*(X,y)      (4.30) 

Use the same techniques as given in section III. 1. 
* 

Map the F -plane onto the lower half of c-plane as shown m 

figures 3.1 and 3.2 to give; 

*       *      *        * 
F*(Z) =  Sr-Tf U - c - (b*+c ) log -jp^rl   (4-31) 

IT (b +c ) b +c 

* 
Next, define the new mapping function to be H (0. Then the 
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inversion formula is: 

dC 
(4.32) 

where W (Z) is the complex velocity. 
* 

Next, define the Kirchhoff function Q : 

Q = Q0 + Q! = (TQ+TJ) + £(e0+ei) = - log W (4.33) 

Then on the free surface it gives: 

1 - e-^V^l* = 0 on S, (4.34a) 

On the body; 

e0 + 01 = -a 

QQ + Q1 = K - a 

on CB 

on AC (4.34b) 

Now, map these boundaries onto the real axis, n=0, of the 

C-plane.  The conditions become: 

! . e-2(T0U) + T1U)) = 0 (n=0,U|>l)   (4.35a) 

-a 
0O + 01 ={T:-a 

(n^rCQ+Cj^ ,<1) 

(Tl=Of-l<C<C0+C1) 

(4.35b) 
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Equation  (4.35)  gives: 

W  (ZU))  = e 
ta C - (vc1) 

1 -   {c0+c1)^ + I/UMCQ+CJ^ 1(^-1) 
(4.36) 

Then the inversion formula gives: 

* • ia 
5 t    *    {-c*(c-l)   ^   (1+cV)   log ^- 

TT(b +c  ) b +1 

+ i/l-cS2v^l - ib*/l-c*2 log   (c+/c2-l) 

- iJF^/^ log !*>% - /(b;2-l) ÜSi.} 
C+b 

(4.37) 

Equations (4.31) and (4.37) provide a complete second-order 

inner solution. 

IV. 4. Second Order Matching 

Let m=2 and n=2 in (2.6), giving: 

2-T. 0. E. of (2-T. I. E.) 

= 2-T. I. E. of (2-T. 0. E. ) 

For large £, (4.37) gives two-term expression. 

(4.38) 

-to 
Z  =   (A0+A1+tAoiIJ^ X.  + A0 (e^ 

where 

b0)   log x. 

+ A0e-^(M0 - tR0) 

IT (bft+c~y 

W^) 
0    0'       TrCbg+CQ) 

(4.39a) 

(4.39b) 
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^nd A0, M0 , and RQ  are defined in (41.3b). 

Next, express c in terms of Z to two terms: 

r-       2  Z/l,.   1.   , -ia      .»,   Z 5 = ä0- ä0<ä^ + lii5-5-' - ,e    - to» 1O9 x; 

+ V'
10«»« - "0> (4.39c) 

Substitute (4.13b), (4.29), and (4.39b) into (4.31) to give: 

- (e-ia-b0) log-|- - iR0e-
ia- M^«] 

- (CQ+C^ - (b^b^CQ+c^ log-|- 

+ (bo+cO+bl+cl) log (bQ+bi+CQ+Cj^)} + 0(|) 
(4.40) 

Expressed in terms of outer variables, then the two-term outer 

expansion of the two-term inner expansion is 

*0 
1       1 -1 

+ ^ - [x + s;^n gy - eÄQsin atan" ^ -r hcot a -GGQ- EKQ] 

(4.41) 

Now consider the inner limit of the outer solution. The 

two-term outer solution is given in equation (4.16).  It is 

assumed that the derivative of Y1(z) with respect to the 

space coordinate z is the same order of magnitude as y*(z). 

Than  the two-term inner expansion of the two-term outer 

expansion is: 
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V *! " x - V1 ^'H - h 
! yv-, (2) + XX, (Z) 

^ ^r     o 9    (4-42) 
211    x2+Y2 

-'-1 

From (4.38>, (4.41) and (4.42), matching gives 

m a j  dYl d£ 
4ir T  d^  z-? 

o -  sxn 
cl ~    STTT  CTT" Z

3
? (4.43) 

y1(z) = Xj^tz) = 0 (4.44) 

The equation (4.44) states that p,(z) and X-(z) are of 

higher order. Therefore: 

li1(z) = X1(z) = o(e) (4.45) 

From (4.43) , c. depends on the rate of change of Y1(Z) 

with respect to the spanwise variable. To the first order, 

equation (3.31) gives 

a = cos  (~cQ) 

Now the hydrodynamic angle of attack aH will be H 

aH = cos" (-c0 - c1) 

Therefore, c, represents the deviation of aH from a. 

So c, represents a "downwash", as it is called in aerodynamics. 



V. FREE-SURFACE MATCHING 

V. i. Introduction 

The planing-surface problem is distinguished from the 

airfoil problem by the presence of a free-surface.  In Green's 

classic two dimensional problem of a plate gliding on the 

surface of a gravity-free, infinitely deep fluid, the non- 

linear free-surface problem can be solved exactly. However, 

Green's solution exhibits an anomaly. The free-surface 

elevation is given by 

y % - log |x| as |xj ■*■ «        (5.1) 

Thus far away from the gliding plate, the free-surface drops 

off logarithmically to -*. The location of the gliding plate 

can not be prescribed and his solution is not unique. 

The present chapter will show that the anomaly exhibited 

in this classic solution is just part of a proper near-field 

expansion of the complete solution which includes three 

dimensional effects. An inner expansion does not necessarily 

satisfy the obvious conditions at infinity; it must only 

match some outer expansion in a proper way. A far-field free- 

surface expansion will be derived and matched with this inner 

expansion. Through this free surface matching, the height of 

the planing surface is properly defined. The depth of sub- 

mergence can thus be prescribed and the solution becomes unique. 

60 
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V. 2. First-Order Free-Surface Matching 

A. Near-Field ^ree-Surface Solution 

The free surface and planing plate on the physical plane 

are mapped onto the real axis of the auxiliary complex c-plane. 

The inversion formula (3.17) gives the relationship between 

the physical Z-plane and the ^-plane. To describe the free- 

surface elevation, let ns0 and c=C on the equation (3.17). The 

image of the free surface (n^O,|C|>1) in the c-plane can now 

be transformed back to the Z-plane: 

-J, Jzlt'» W  =x^ +iY^ (5.2) 

X(C) and y(C) are the coordinates of a point in the free surface. 

Far away from the planing surface, the equation (5.2) gives: 

-io -ior 
Z = X + iY = A0( C + (e  -b0) log C + e " (MQ- iRQ)]+  0(|) 

(5.3) 

A-, M., and R0 are defined in (4.13b). The leading edge is 

mapped onto ^=-1 and the jet onto ^-bg. Therefore, the up- 

stream free surface corresponds to 

C < -b0 < -1 

log C = log |Cl - ffi 

(5.4) 

(5.5) 

Separate the real and imaginary parts in (5.3) and eliminate 
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the parameter 5 to give : 

Y ^ - AßSin a log|x| + A.[sin a log A- - Tr(cos a -b0) 

- M0sin a - RQCOS a] + O(log-^J-) (5.6) 

This is the free-surface elevation far upstream and downstream 

from the planing surface. As X -»• ±«r the free-surface deflection 

becomes Y -* -». This anomaly is also observed in Wagner^ and 

Green's two dimensional solutions. However, it will be shown 

in the present work that the equation (5.6) is just a proper 

inner description. 

B. Far-Field Free-Surface Solution 

Equation (3.20) gives 

Wox - % + ^oz= 0 on y-0      {5-7) 

If (3.24) is used, equation (5.8) becomes 

^Ox^ 0 

Integration gives 

n0 = D(z) (5.8) 

where D is function of z only. However (3.24) represents a 

uniform stream and, to the same order of magnitude, the free- 

surface will correspond to the undisturbed free-surface elevation. 

This gives D=0. So 

n0 = 0 {5.9) 
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This will be called the "one-term expansion" of the free-surface 

elevation. 

C. First-Order Free-Surface Matching 

Equation (3.29) gives 

e#0 ^  ( -CQCOS a + /l""C0 sin a)x + (c0sin a+/l-c0 cos a)y 

% x as |z| -*• »   (5.10) 

where cQ = - cos a is used. This is the one-term outer expansion 

of the one-term inner expansion of the velocity potential, which 

corresponds to a uniform stream at its outer limit. Far away 

the free-surface can thus be represented by 

N0 = 0 on S, (5.11) 

This is the one-term outer expansion of the one-term inner 

expansion of the free-surface elevation. 

From (5.9), take inner variables to obtain one-term 

expression and then converted back to outer variables to give 

n0 = 0 (5.12) 

This is the one-term inner expansion of the one-term outer 

expansion. 

Equations (5.12) and (5.13) agree with the matching 

principle (2.6). The first-order free-surface matching does 

not provide additional information; in a sense, it is trivial. 

Nevertheless this matching does establish the relationship 

so that the higher-order free-surface expansions will follow 
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the matching principle. 

V. 3. Second-Order Outer Free-Surface Solution 

Equation (4.3') gives the kinematic free-surface condition: 

*0xnlX 
+ hx^Ox'  *ly + ♦l2ri0Z 

s 0 on y*0     (5*13) 

If (3.24) and (5.9) are used, one obtains: 

^Ix - *ly = 0 

Integration with respect to x gives 

<■*-» y=0 

■.-/. 
<l>ly (Sr 0, Z)äi 

(5.14) 

(5.15) 

The lower limit is taken to be -» to coincide with the 

radiation condition. In appendix D, it is shown that 

<t>ly(x,0,z)  = if 1fli!£ r i 7x2
+(z-c) 

" 4irJ d;       lz-? x(2-d -1  dC     (5.16) 

where the Cauchy principal value is taken. Substitute (5.16) 

into (5.15) and change the order of integration to give 

.  U-Hiog \^\* SS^S.  lac (5.17) 

The two-term outer solution is thus 
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n0 + r»! = i r    dYi(0  i      n.—? 
- ?ijf i -ar- Fc [x+/x2+(z-a2 

- |^| log[l^|^(z-oi|]dc (5.18) 

V. 4. Intermediate Free-Surface Matching 

Let m=l and n=2 in (2.6) to give 

1-T. I. E. Of (2~T. 0. E.) 

* 2-T. 0. E. Of (1-T. I . E.) 

Substitute inner variables in (5.18) to give 

n0+ ^ * - —Yj^UUl+loglex-eHcot a|] 

1 /1 dYl 
" ?¥|    d 

sgn (Z-c) log 2|Z-c|d? 

U) 
d? 

eX-gHcot adc + o(£2) 
Z-t 

where sgn (Z-?) « { IJ Z-c>0 
Z-?<0 

(5.19) 

(5.20) 

(5.21) 

So the one-term inner expansion of the two-term outer 

expansion is: 

n0 + V " l7Yl(z)I1+ lo9lxN 

ij1 JIi 
4TT/    d? 
-'-I 

(O 
-sgn (z-?) log 2|z-t|d?  (5,22) 

Next, substitute outer variables in (5.6) to give the two- 

term outer expansion of the one-term inner expansion: 

y ^ h - eA.sin alog |x| + eAnsin alog e+ eEr (5.23) 
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where 

E0 = A0[sin olog hQ - IT (cos oi-b0)   - NLsin a- RQCOS a] 

(5.24) 

r'rora (5.19), (5.22) and (5.23), the intermediate matching gives 

h = - elog eA0sin a - eE0 - ^ y^iz) 

L.(l  dYiU). 
4*1     dC ' d^—sgn (2-5) log 2\z~t\At (5.25) 

where E0 is gxven in (5.24) 

The leading term in the inner solution is -eA^sin alog|x|; 

this term is exactly matched to one term in the outer solution 

- «— Yi (z) log lxl* This shows that the anomaly in the classic 

solution is just part of a proper near-field expansion of the 

complete solution. It is also noted that far away from the 

planing surface, if AR approaches infinity or e-»-0, physically 

it corresponds to a large span of small chord length and the 

planing surface shrinks to a line. To this lowest order, 

there is no disturbance in the far field, which agrees with 

the description in (5.25). 

The location of the planing surface is now uniquely 

defined with respect to the undisturbed free surface. In 

natural variables,(5.25) gives 

h ' " 1T(b0+C0)
ISin ^^ ^O^CQP ' 1T(COS ^V " M0£in a 
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- RQCOS a + sin a] + ^4n in a I  d 
2iü I  dc 

,ao )sgn (z-?)log 2|2-^|dC 

(5.26) 

where M-, R. are defined in (4.13b). This is the important 

result of this chapter. 

V. 5. Second-^Order Inner Free-Surface Solution 

Far away, the inversion formula gives: 

Z = (A0 + A1 + iAjj^K + A0(e-
ia-b0) log ? 

+ A0e'
io(M0-iR0) + 0(|) 

On the free surface: 

(5.27) 

.^ot Z = X +  iY  =   (A0+A1+iAoilA-5[) 5  + A0(e   ^-b0)log  E. 

+ A0e-ia(M0-iR0)   +0(1)     as   u (5.28) 

Separate the real and imaginary parts and eliminate the 

parameter E.  to give: 

Y -v -J—- X - A-sin ctlog |x| + En + 0(
1^XI) sm a (5.29) 

V. 6. Second Order Free-Surface Matching 

Let m=2 and n=2 on (2.6) : 
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2-T. I. E. of 2-T.O . E. 

= 2-T. 0. E. of 2-T. I. E. (5.30) 

From (5.20), the two-term inner expansion of the two-term 

outer expansion is 

Y1U)      . .   1 I  dYlU) 
n0 + nl ^ -ItT (l+lo9 lxl> + 4¥j-i"~3t—Sgn (z-c) 

,   * 1 I1 dYlU)  x •log 2^-^-^-^—^^  (5. 

In (5.29)f use outer variables to give the two-term outer 

expansion of the two-term inner expansion : 

c, 
y 'V' n0 + n^ h + 3^n gx - eA0sin alog |x| 

+ Elog e A0sin a + eA.lsin alog A0 

31) 

- IT (cos a-b«) - M0sin a - R-cos al   (5.32) 

From (5.30), (5.31) and (5.32), matching show that each term 

in (5.31) is exactly matched by one term in (5.32), and vice 

versa.  In a sense, this matching is trivial. However, it 

does give a hint that so far the analysis is correct. 



VI. HYDRODYNAMIOLIFT CALCULATION 

VI. 1. Chord Length of the Planing Surface 

The hydrodynamic problem can be completely described by 

parameters a0/ bof and c0 for the first-order solution and a,, 

b,, and c, for the second-order solution respectively. However, 

those parameters are related to the chord length at each section. 

Let the chord length be Hz)   in natural variable and Liz)   in 

inner variable. The chord length is mapped onto the c-plane 

by the segment |C| < 1 on the real axis n=0 in Figure 3.2. 

The trailing edge and leading edge of the plate are mapped 

onto C= lf-1 respectively. From equation (3.11), the chord 

length is found to be 

L(z)e    = zT - zL =/ wmHr^ -/   H(C' 

J-i 

where Z- and Z- denote the trailing edge and leading edge 

locations, respectively. So 

4l w) dv I     wTTT    g Hz)  = ee    H      STTTT" «^^ (6.1) 

A. First-Order Cherd Length Expression 

If (3.11) and (3.18) are substituted into (6.1), it 

follows that: 
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c60 bn A 

iT(b0+c0) 
l l  0 0'  y b0+l    0 

+ vA-c0
2(h0~AQ

2-l)] (6.2) 

The first-order parameters aof b0, and c0 are thus related to 

the chord length i{z). 

B. Second-Order Chord Length Expression 

Substitute (4.32a) and (4.36) into (6.1) to give 

e(6 +6 ) W1 

^z> = w (b^b^c^c,) [- (l^Vc,)^^! log g^I-. 

-2(c0+c1) + TTA- (CQ+CJ^) 
Z (bQ+bj-AbQ+bj^) 2-l) 1   (6.3) 

Thus, the parameters alf b1, and c1  are also related to the 

chord length Hz). 

VI. 2. Wetted Length of the Planing Surface 

A jet is thrown off at the leading edge. Therefore it 

is somewhat ambiguous to refer to the "wetted length" in this 

case. However, usually the jet thickness is small compared 

to the chord length. The "pressure length can thus be defined 

as the distance between the trailing edge and the stagnation 

point on the planing plate. Then define the "wetted length" 

Lw(z) as the pressure length, i.e., 

r1 

Lw(z)e   =ZT-Zstag=/  wTTT ^ 
J c* 
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where Z-^  denotes the stagnation point, stag 

To the first-order, it is 

Vz> - Tlb^T ^c0b0)log ^ - c0 + c0
2 

+ A^ffyh^J^i)  -^7 + bosin'1(-co) 

+
 V-lsi»  E^-l' (6.4) 

To the second order, it is 

ÄW^)  = .(b^b^c^c^   tlMv^Hb^b,)  logCß^i^-) 

- (CQ+CJ^)  +  (c0+c1)2 + /l-(c0+c1)2[J{b0+b1-/(b0-b1)2-l) 

- /l- (c0+c1) 2 +  (b0+b1)sin"1(-c0-c1) 

+ /(bn4b^^-l.sin"1^^—]} (6.5) 
u    i D0 c0 

VI.   3.  Jet Direction 

Let jet angle ß be the angle the jet makes asymptotically 

with the plate.    The  jet J in the Z-plane is mapped onto c^-bj.. 

Equation   (3.18)  gives 

^l+bAcrt-i/l-cn
2/bn

2-l (-7r+a-ß)t_  atoC"0"0   ^ "0  T"0 
-bo"co 

The real part gives 
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-1 l+cobo £ = cos l{  . ; ") (6,6) 
D0 CG 

VI, 4. Lift Force 

Litt force can be obtained by integrating pressure along 

the plate. This is a near-field problem. 

Let P be the pressure in the fluid, F be the force and T 

be the lift on the planing surface per—unit—length in spanwise 

direction. For a steady, irrotational, incompressible flow, 

the Bernoulli equation gives 

- + I(<J.X + *y + 4>2 ) = 2 +T (6.7) 

where p is the fluid density- Let P^O and use inner variables 

to obtain: 

- + 2(*X  + *Y  + e ^Z ) " I (6.8) 

Now assume the following asymptotic expansions exist for P,F, 

and T 
N 

)Pn 
as e-^0 for fixed X ,¥ 

n=0 n n+1   n 

N F  =o(F ) F -v En F ^n+l 0{n) 
n=0 n as e-»-0 for fixed X rY 
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N 
n=0    n Tn+l

=o(Tn) 

for fixed xfY 
(6.9) 

Substitute   (6.9)   into  (6.8)   to give 

IT   * T(*0x2 + ♦oy2) ^ + Vlx + ♦oy*ly 

+ r + i(*ix2 + 2*ox*2x + ♦IY2 + 2*oy*iy + e2*oZ
2) 

l 
1 (6.10) 

A. First-Order Lift Force 

Keeping only the leading-order terms in (6.10), one obtains: 

~   + I^Ox   *0y '  2 (6.11) 

The force on the planing plate is 

■f 
t.e 

P0dZ (6.12) 

J i.e. 

where t.e.  and t.e. denote the leading edge and trailing edge 

of the planing plate respectively. The integral is taken along 

the planing plate. This force is normal to the plate and can 

be decomposed into vertical and horizontal components, that is, 

lift and drag, respectively. The lift force per-unit-length 

can now be obtained from equation (6.12) to give: 
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rt.e. 
T0(z) = ^(F0) = He   il |(l-!W0|

2)dZ} (6.13) 

If equations (3.16) and (3.10) are substituted into equation 

(6.13), one obtains: 

V21 - pb^ toQ~A^i)Ä^coB a (6 14) 

where a0, b0,and cQ  can be obtained by solving three simul- 

taneous equations (3.31), (5.26) and (6.2). The equation (6.14) 

gives the lift force per-unit—length in spanwise direction. 

This equation agrees with Green's non-linear solution.  However, 

Green could only compute the lift force in two special cases. 

One case is b0^l, which corresponds to the infinitely long 

planing plate, that is, the very lightly loaded planing plate. 

The other case is b0->", corresponding to Rayleigh's cavity 

flow which is of no interest in the planing problem.  In the 

present work, the lift force can be computed uniquely for 

arbitrary angle of incidence and for a heavily-loaded as well 

as a lightly-loaded planing arface. Numerical calculations 

will be presented in the next section. 

B. Second-Order Lift Force 

Equation (6.10) gives 

^+|[(VVx+ (VVYJ ~1 (6.15) 



if. 

I 

f 

The force per-unit-length on the planing plate to the second- 

order is: 

,t.e. 

'l 'I       (P0+P13 
Jt.e. 

^0 + Fi =1   (P^+PjdZ (6.16) 

If equations (4.32), (4.36) and (6.15) are substituted into 

equation (6.16), the lift force to the second-order is found 

to be 

T0(2) + ^(Z) = P^b^fC^'^-^O^l^ 

(b0+b1-/(b0+b1)
;d-l)cos a       (6 17) 

VI. 5« First-Order Numerical Calculation 

There are three unknowns and three available equations 

(3.31), (5.26), and (6.2).  Therefore, it appears likely that 

a solution can be found.  It is noted that c0 is function of 

a only and is easily obtained. The problem can thus be reduced 

to two unknowns with two equations as follow: 

h = " Wb0?c0)
[ Sin a 'lo*    ir(b0?c0) " *{cos  a-b0, 

sin a I     rd   ,    a0 r1 
in a I     rd   . - M0sin a - R0 cos a+ sin a]   + ^±f.\     ^V^ 

•sgn   (2-5)'log 2|z-c|dc (6.18) 

IM = TW^[ -  U+W10* ^TT " 2co 
+ iT/l-c0

2(b0-^
2-l)] (6.19) 



76 

Now a0 can be expressed as a function of bor fron (6.19). If 

a0, sc obtained, is substituted back into (6.18), it gives 

a non-linear integral equation of one variable b. with a 

complicated kernel. To perform a numerical calculation, it 

is more convenient to solve a system of two non-linear 

equations (6.18) and (6.19) simultaneously than a non-linear 

integral equation with a very complicated kernel. 

Now, express (6.18) and (6.19) symbolically as following: 

(n) (n) h « g(a0'  , b0
% ') + I.P. (a, 

Uz) = f(a0
(n), b0

(n)) 

(n-1) 
' b; 

(n-1) 

(6.20) 

Where I.P. represents the integral term in (6.18), and the 

superscript  ' denotes a value at the n-th iteration. For 

the first iteration, integral part is set equal to zero. 

The problem requires the solution of the two non-linear 

algebraic equations.  Then the iteration is terminated if 

(n)    (n-1) 
a0    a0 

TUT < 6 

and 
. (n)  . (n-l) 
b0  " b0 

(n) < 6 

(6.21) 

where 6 is some positive number which is much less than one. 
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A. Cusp Shape 

Let the chord-length distribution be 

Kz) = IQU-Z2)1*5 (6.22) 

where t^  is the chord length at middle section, 2=0. 

The chord length £,(z) and its first derivative with 

respect to z  are continuous at the tip, as elsewhere.  Recall 

that h is the height of the trailing edge above the un- 

disturbed free surface; physically, it can be related to a 

loading condition on the planing surface.  If the loading 

is heavy, the trailing edge will be located much below the 

undisturbed free surface and consequently h will have a 

large negative value. 

For A0=0.4, o=15 , the coefficient of lift-per-unit • 

span (local lift coefficient) formed with the wetted length 

is given in Figure 6.1. for different value of h. Note 

that the ordinate scale does not start at zero. The jet 

thickness a0 at each section is shown in Figure 6.2. 

A cusp shape is not a practical shape. More detail 

will be discussed for the elliptic shape. 

B. Elliptic Shape 

Let the chord-length distribution be 

Mz) = Ä0(l-z
2)0*5 (6.23) 

The chord length is continuous at the tip, as elsewhere; 

however its first derivative is not continous at the tip. 
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Observation £rom experiments indicates that tip effects are 

local phenomena, and the solution obtained from the present 

theory can be expected to give a good result except in the 

very neighborhood of the tips. 

Local lift coefficient distribution in spanwise direc- 

tion for a=15 , 10 ,  and 5 are plotted in Figures 6.3, 6.4, 

and 6.5 respectively for the case 10=0.4. From the defini- 

tion of b0, the value of b. is bounded by 

1 <b0 < 

For the case b.-^l, if equations (6.2) and (6.4) are 

used, one obtains: 

^ ^ 0 as b0-a 
c 

where I    is the chord length in natural variable. From 

equations (6.4) and (6.14), numerical calculation gives: 

Tn    0.289 for  a=15° 
—>r- %    0-214 a=10 
plTÄ    0.120 a=5G (6.23) 

The upper-bound limit for the local-lift-coefficient is 

thus obtained.  Note that this upper-bound limit is a 

function of o only. This statement can also be seen in 
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in Figure 6.8. 

For the case bQ-"», if equations (6.2) and (6.4) are 

used, one obtains: 

7—^1 as bn-*«» 
*c 0 

Now, if equation (6.6)  is used, the jet angle ß is found 

to be: 

B «v 180 as b--*» 

This is a cavity-flow. However, this does provide a lower- 

bound for the extremely heavily loaded planing surface. 

Numerical calculation gives: 

Tn     0.167 for a=15° 
"  -v 0.121 a=10o 

pü^ll     0.066 a=50      (6.24) 

If equation (6.18) is used, the depth of submergence h is 

found to be 

h '^ -» as bjj-*00 

Those upper-bound and lower-bound limits are plotted 

in Figures 6.3, 6.4, and 6.5 respectively. Note that due 
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to the three-dimensional effect, the values of upper-bound 

and lower-bound local lift coefficients decrease along the 

spanwise direction and approach zero at the tips. 

The local lift coefficient at the middle section is 

plotted with respect to angle of attack a in Figure 6.6. 

In Figure 6.7, the ratio of wetted length to chord 

length RJ-T— # at the middle section is plotted against the 
c 

height of the trailing edge for different values of lQ. 

In Figure 6.8, £„, at the middle section, is plotted 

against local lift coefficient for different values of tQ 

for a-15 .  It shows that for a small value of «.„, say, 

Äw<0.15, the chord length has no significance. The hydro- 

dynamic results are the same whether lQ  is 0.8, 0.6, 0.4, 

or 0.2. 

In Figure 6.9, R. is plotted against the local lift 

coefficient. This figure can also be obtained from Green's 

non-linear solution.  It is seen that the local lift coeffi- 

cient takes a constant value for a fixed a when R. is small. 

For the case a-»-0, from equations (6.4) and (6.14), one obtains: 

T0   1 —Y^- ^ ±T\a as a->0 (6.25) 

Wagner (1932) considered the linearized case of an 

infinitely long plate and very small a. Wagner gave the 
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result as given in equation (6.25). Therefore, the present 

non-linear theory does approach Wagner's linearized solution 

as or*0. For a finite value of a, the present theory gives 

the values of local lift coefficient in equation (6.23), 

while Wagner's linearized theory gives the value of 0.411, 

0o274, and 0.137 for a=15 , 10 , and 5 respectively. It 

is noted that a non-linear effect must be considered if a 

is not very small. 

VI. 6. Second-Order Numerical Calculation 

In order to obtain a unique second-order solution, the 

parameters a., b., and c. must be determined. There are three 

unknowns, but so far only two equations (4.45) and (6.2b), 

have been obtained. One is obtained from the velocity poten- 

tial matching, and the other is from the chord-length rela- 

tionship.  The second-order free-surface matching fails to 

provide an additional equation to define the depth of sub- 

mergence . 

From the first-order solution, it appeared that a 

second-order outer solution had to be found to provide a 

height reference for the first-order complete solution. 

Accordingly, a third-order outer solution must be found in 

order to provide a height reference for the second-order 

complete solution.  An equation similar to (5.26) will then 

be obtained from the free surface-matching.  Then the 
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second-order hydrodynanic problem will be completely solved. 

The third-order outer solution will be formulated in the 

next chapter.  However, at the present stage, two special 

cases can be readily calculated before entering the complicat- 

ed third-order outer solution. 

A. b* = b + b, -► 1 o   1 

This corresponds to a lightly loaded planing surfaces. 

The solution similar to Wagner's, with a second-order 

correction, can be obtained. 

B. Angle of Attack a Is Small 

The parameter c. which represents a downwash correction, 

is given in (4.43).  It is a function of aQI hQ,  CQ, and a 

only and can be obtained easily from the first-order solution. 

Now, if the angle of incidence is small, the problem can be 

linearized as in aerodynamics, so that the second-order effect 

is mainly due to downwash. One obtains: 

T0(Z) + r^z)^ p1E_Or/1-(c0+c1) (h0-£^l)cos a 
001 (6.26) 

The solution of c, is given in Figure 6.10 for the case 

of an elliptical planing surface. As expected, the solution 

for c, breaks down at the tips. However, the curves indi- 

cate that it is quite a weak singularity at the tips.  The 

solution can be expected to be valid all across the span 
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except in the very neighborhood of the tips. Local lift 

coefficient is given in Figure 6.11.  For a heavily loaded 

planing surfacer the downwash correction is more significant 

than a lightly loaded planing surface. 
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VII. THIRD-ORDER OUTER SOLUTION 

VII. 1. Introduction 

In order to obtain a complete second-order solution, it 

is necessary to solve the far-field problem to three terms. 

A third-order free-surface expression relating parameters a,, 

b , and c, to the depth of submergence similar to (5.26), can 

zhen  be obtained from the matching of the three-term outer 

expansion of the two-term inner expansion to the two-term 

inner expansion of the the three-term outer expansion. The 

second-order problem can thus be completely solved. 

VII. 2. Third-Order Outer Boundary-Value Problem 

From (2.13) - (2.16), the following are obtained: 

(L)     du  +<!>.>   + <t>^  =0   •  .c, -j       (7.1) *2xx  y2yy  y2z2     xn fluid 

2 
(P1)   *lx + 2*2x + *ly2 + *lz2 + 2 Vlxy = 0 

on y=0 (7.2) 

(F2) *lxnlx + n2x " ^y" '"iz^lz "  Vlyy = 0 

on y=0 (7.3) 

(R) ^2x= 0   ;   (,)2y = <t,2z = 0       as x-»—»^*-« (7.4) 

The free-surface boundary condition (Fl) can be rewritten 

as: 

90 
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*2x = " I(*lx2+^y2+*l22+2r,l*lxy,     0n ^     i7-5) 

The right-hand side of the above equation is known from 

the first-and second-order outer solutions. Therefore, 

combined with Laplace equation (7.1), the problem is a non- 

homogeneous boundary-value problem.  The governing differen- 

tial equation is linear and so the principle of superposition 

is applicable. The final solution can be obtained by adding 

the homegeneous solution to the particular solution. 

Define the velocity potential iJu to be a particular 
* 

solution of this non-homogeneous problem. And let p be 

*    o    2   2    2 
* 2    Ylx  ly   Iz   1 Ixy  on y=0      (7.6) 

Then the dynamic condition (Fl) becomes 

*2x - !r (7-7' 

The equation (7.7) can be interpreted in terms of a pressure 

distribution over the free surface.  This problem will be 

solved by the use of a double Fourier transform. (See Wehausen 

31 & Laitone ) 

VII. 3. Third-Order Outer Solution 
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Define the double Fourier transform with respect to x 

and z to be 

»i-'^t31008 6+zsin 9). ,„ zje ax*uz 

(7.8a} 

Then the inverse transform is 

(xry,z) = ^/  /  5f(k,y,e)ei 

J —oaJ—oo 

ik(xcos 9+zsin ö)^,^ 

(7.8b) 

Now take tile double Fourier transform of the dynamic condition 

(Fl) to give: 

y       sec 9 i* 
»2 " "ZkT P on y=0        (7.9) 

Next^ take the transform of the Laplace equation to give 

W - *% -» 

This is an ordinary differential equation. A general 

solution is 

^  (k,y,9) = A(k,y,e)e"ky + B(k,y/9)e
ky        (7.10) 

Note that y vertically up is positive.  If radiation 

condition is used, equation (7.10) becomes: 
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^2pOt,y,0)  = B(Jcry,e)eky (7.11) 

From   (7.9)   the constant B io determined to give 

Rfk v fli    - sec e %* B{k,y,Q)   - -r^ p (7>12) 

So the equation   (7.11)  gives 

V'*'e'-e*-f^/Xp*0'' 
Take the inverse transform to give 

2)e-ik(xcos e+zsin e)dx.dz 

(7.13) 

♦2P 
-ik (mcos 8+nsin Ö) -     ,  , •e dm*dn) 

,etk(xcos  e+zsin e)d]c,de 

Integration with respect to k gives: 

p/2 r -  r 
*     (x,y,Z)  = ---j/        sec 6/       / 

^ 4Tr J-7r/2 J-cc  J - J*lm
2+*ly2+*ln2+2*lmyV 

(x-m)cos_e+(z-n)sin 9      ^.^.^ 
2 2 y +((x-m)cos  e+(z-n)sin 0] 

\ f • m) 

where 4), (x^z) and n-, (x,z) are given in (4.11) and (5.17) 

The strength y,(z),]i,{z),   and X,(z) are given in (4.19). 
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Equation (7.14) gives a particular solution. The 

homogeneous solution is obtained from   (4.8); it gives: 

l    f1      yY2U) „ 
*2h(x,y,z) = ^j   -j-i—2[1+y2  r 5ld? 

"   ) 

—2   3/2'^ 
l.f1 ^2^ 
4irJ-l   [x2

+y2
+(z- 

1 r1    xx2^)    .dc 
47fJ-l [xV^z-O2!3/2  ' (7.15) 

The first integral in the above equation represents the 

correction Y^^z) to the vortex strength Yi (z) in (4.9). 

The final third-order outer solution is 

(|)2(x,yfz) = (|)2 (x,y,z) + <|)2h(x,y,z) (7.16) 

The unknowns ^2^'  ^2^'  and X2^ can be determined by 

intermediate matching to the second-order inner solution. 

VII. 4. Intermediate Velocity-Potential Matching 

Let m=2 and n--3 in the equation (2.6): 

2-T. I. E. of 3-T. 0. E. 

= 3-T. 0. E. of 2-T. I. E. (7.18) 

The three-term outer expansion is 
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i 
t 

v r1 YIU)      x 

0 1 2       4Uiy+<z-^     A^+T+ü-ö7 

v   f1        y2U) x 

jjr1 v2{a 

+ 44l [xV^z-O2!3/2 ^ 

^J-l  [xV^z-O2!3/2 

^im^ly'^ln^2*^^ 

(x-m)coS 9+(2-n)Sin    9    de.^.^ 
y2+l(x-m)cos 8+(z-n)sin Q]2 (7.19) 

Take inner variables, the two-term inner expansion of 

the three-term outer expansion in outer variable is found to 

be: 

Yl{z)   -1 y  Y2{z)   -1 y 
VW x" -2F-tan   x - -2F-tan   l 

1    yp2(z) l    x'X2(z) 
+ lü  2~~2  + 27  27~2~ x +y      x +y 

•TT/ 

sec e/      ^^^ly'^m^^lmy^l5 

de'dni'dn  n  on. 
-mcos e+(z-n)sin 0 w.^uj 

Next, consider the inner solution. After a long and 

tedious algebraic manipulation, the mapping inversion formula 

gives Z in terms of large Z,  to three-term: 
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I«2 

2        r/A0+A1+A2-A0-—^-C,     +  nAoiIK^ +Al5i;r^ 
72sin    a 

c   (l+c z) 
+ A^-A   3

0     -c,2!}  +  i^l-c^-^cot a 
Isin    a 

+ bj^sin a) sin a -   (c0b1+c1b0)c0l   - AjCc^bjj) 

- tlA^sin a- AAcrt(b c,  cot a+b-.sin a) 
0 u o    o ^ -L 

+ A sin aic-jb.+c.bQ)   + A.sin a]}log c 

+ e"ialA0(M0-i!R0)   +  AgCMj+iJ^)   + A1(M0-iR0)l 

+ ^ {-c0b0(l+c0b0)  + T0sin2 a - tsin al(l+c0b0)bö 

+ c0T0]Ho(i5) (7i21) 

bft-2 ^2-I —5— 

b0-^0 -1 

61      bl+cl 
1        0  60      b0+c0 

5,     bj+c, 

h - WS ^ H^ 
Ml ' cl  -   a+c0b0)  b^T -   (^b^bgUog   (b0+l) 

cnbnci 
R    =   {  v,u      - btsin a)   log    2 + b,sin    a 

1 sm a        i x 

+(-ifcrT cocr bobisin a) 1O
9 ^-^T^ 

(7.22) 

Next, express C in terms of large Z to three-term: 
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Ao   Ao Ao l        5° 
Cl    Al   C0{1+C0 )   2 

0   2sin a 

~ { (e ^ -b0) - c0(CQb.+Cjb-) - (bQC-cot a+b.sin a}sin a 

Al - -^= {c0+b0) - £{c0b1+c1b0)sin a - (b^j^cot a 

+ bisin a!co+ ^ •ln al - (s;+ <iirj' <^a-bo>' 

•(log 2 - I09 A0> - «""(M^lRg) 

+<^+ -^iir?''^"-"o' - «'"'^ ^sirs) (Mo-<Ro' 

A 
+ ^(e"£a-b0)

2Mlog Z-log AQ) 

+ ^0 le-ia(Mo-iRo)(e-^-bo) + Cobo(i+Cobo) 

- T0sin
2 a + tc0T0sin a+(l+c0b0)b0] + O^) ^ ^ 

z 

If equation (7.23) is used, the second-order inner 

velocity potential expanded with respect to large Z to three- 

term can be obtained. Take outer variables, one obtains: 

£(^+4^) A- x + y 8in a - ECAQ+Aj^ysin a«tan" -^ 

ci2     yco(1+co2) 

 5- x +  ~— + eAn[<b-C1cot a 
*■ 2sin3   a u       0  i 
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+ b^in a)c0 -   (c0b1+c1b0)sin a+^^^CCg+b^ltan"1-^ 

+ —j-   [ CjjCcQbj+Cjbp)   +   (bgCjCot a-i-b.sin a)sin a -b^] 
2.  2   . 

•log {x%y^) !L_-__{[| log (x^+y^) + ytan 1 Jl 
x^+y'4  z x 

•sin a + [xtan-1 J - | log (x2+y2)](c0+b0)} 

e A x 
" —n I<Mosin a-Roco)sin a " (1+cobo)cobo x +y 

2 2 + T0sin a +b0(b0+c0) - sin o»log EAQ] 

e
2A 2y 

+ -^-j ( K0c0+R0sin a- c0T0 - (l+c0b0)b0 
x +y 

- (b0+c0) log eAgJsin a (7 24) 

This is the three-term outer expansion of the two-term inner 

expansion. 

If equations (7.18), (7.20) and (7.24) are used, the 

strength of singularities Yo» ^O' an^ *? can be 0btaine^^ 

VII. 5. Third-Order Free-Surface Expression 

The equation (7.3) gives: 

n2 =j  (nl*lyy + *2y "  *lxnlx " hzHz^*    on y=(j7#25) 

where the radiation condition gives the lower limit of the 

integral to be - e". 



Ir 99 

« 
*' 

The equations (4.11) and (4.19) give (Appendix B) 

. /„  .A „»   .if       .„.        in the wake 
♦l(x' ±0' Z) = ^ Yl(z)        ony=±0 (7.26a) 

This function is well defined and can be differentiated with 

respect to x and z directly at y=0 to give: 

♦lx(x' ±0' 2> s 0 x*0 (7.26b) 

.      .   , ^l ^ inside the wake 
♦l2ix# -o, z) = t 0 outside the wake 

(7.26c) 

and from Appendix D, it gives 

J ~l (7.26d) 

Substitute equation (7.26) into (7.25) to give: 

dx      on y=0, x<0   (7.27a) n2 = /  ^i^iyy + V 

Only this upstream condition is needed. However, if equations 

(7.26a) - (7.26c) are used, one obtains: 

(b.   = -*,   - «t»,   =0        for y=0, x<0    (7.27b) Tlyy   Ylxx  rlzz I     ' 

Finally, second-order free-surface deflection becomes: 
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n2= j.. *2y dx on y=0, x<0     {7.27c) 

So the three-tern outer solution is: 

i  f1 dYi<0    i i f 
^o^^^ " - ^ -dr-i=c t xWx +(2-c) 

/.„*2y dx on y=0, x<0 (7.28) 

Now, consider the three-term outer expansion of the two- 

term inner expansion for the free-surface deflection. Set c*5 

in equation (7.21a). Then separate the real and imaginary 

parts and eliminate £;, the free-surface elevation for large 

E,  is thus obtained. 

In order to perform the free-surface matching, equation 

(7.27c) must be evaluated near the line of singularities, 

unfortunately, due to the mathematical difficulty, this inner 

limit has not yet been obtained. However, if this limit is 

evaluated, then its matching with the three-term outer 

expansion of the two-term inner expansion for free-surface 

will provide an equation to relate the depth of submergence . 

and second-order parameters a,, b., c,, and thus give an 

unique second-order solution. 



VIII. WEDGE SHAPE PLANING SURFACE 

VIII. I. Introducation 

In the previous chapters, it is assumed that there is 

no deadrise angle and the planing surface takes the simplest 

form - a flat plate. 

In the present chapter, the theory will be extended to 

include the case where the deadrise angle is different from 

zero. This will be the case for a V-shape planing surface. 

It is also shown that the theory can also be carried over 

to any kind of planing shape if there is no camber in the 

longitudinal direction. 

VIII. 2. Formulation of the Problem 

Let 8 be the deadrise angle. The trailing edge is 

lying on a plane normal to the incident flow. 

For an ideal irrotational flow, there exists a 

velocity potential Mx, Y'  z) which satisfies the continuity 

condition: 

(L)        V2* =0 in fluid  (8.1) 

The Bernoulli equation on the free surface; 

(Fl)   (j>x
2 + $y

2  + <))z
2 = 1 on Sf     (8.2) 

101 
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and the kinematic free-surface condition: 

x x   y  Yz z f        (8.3) 

Next consider the body condition. Define the wedge 

surface by the equation 

y = SCx, z) (8.4a) 

or  S = S(xf z) - y = xtan a + ztan 6 - y = 0       (8.4b) 

Then the body condition is: 

li = 0 = 4 S +<J>S +(J)S (8.5) 3n     yx x  sy y  rz z 

Substitute (8.4b) into (8.5) to give: 

(B)   $ tan a - <}) + <|) tan 9 = 0  on body     (8.e) 

The radiation condition at upstream infinity gives: 

*x= i; 

(R)  ^y = 0; 

^z " as x->-«>,y>-<" (8.7) 

The boundary-value problem for the wedge shape planing 

surface is thus mathematically formulated by (8.1), (8.2), 



103 

(8.3), (8.6), and (8.7). 

Let the aspect-ratio AR be defined as 

2 
AR -  (Span Projected on the undisturbed Free Surface) 

Wetted Planing Area 
(8.8) 

VII. 3. Far-Field Boundary-Value Problem and Solution 

Far away from the planing surface, the detail of the 

body shape is lost and the work done in the previous 

chapter for the planing plate is good for the wedge-shape 

planing surface as well with only one modification, namely, 

h is not constant any more but a function of z. 

VIII. 4. Near-Field BoundaryValue Problem 

The location of trailing edge is given by 

y = h(z) = h0 + ztan 8 (8.9) 

where h. is the height of the trailing edge at the middle 

section above the undisturbed free surface. 

Let the inner variables be 

v ^ x-Hh(z)cot a X       , 

Y = Z±l2)   . z = z Y e   ' Z (8.10) 



in fluid (8.11) 

on Sj- (8.12) 

on S, (8.13) 
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The inner boundary-value problem is: 

(L)    ♦  + $  -i- t2*  - 0 v   ' XX   YY      ZZ 

(Fl)    *x
2 + *Y

2  + e2*z
2 = 1 

(F2)    i*xNx - *y + e*2Nz = 0 

(B)    «tytan o *• ♦„ + e*_tan 6 = 0 on body     (8.14) 
A I A 

Assume the existence of asymptotic series for 4 and N as 

given in (2.22). 

A. First-Order Inner Solution 

The first-order boundary value problem is exactly the 

same as given in section III. 1. Therefore, the solution is 

given by (3.10) and (3.19). Now the quantity h is a function 

of z. 

B. Second-Order Inner Solution 

The boundary-value problem is 

(L) $1XX + *1YY = 0 in fluid (8.15) 

(Fl) $0X*1X + WlY = 0 on Sf (8.16) 

(F2) *0XN1X + *1XN0X " e$lY " 0 on Sf (8.17) 

(B)     *ixtan a ~ *1Y + £*iztan  Q   -  0     on body  (8.18) 

It is noted that 
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h(z) = 0{Mz)) 

so  h(z) = 0(e) as t+0 (8.19) 

The equations (8.9) and (8.19) give: 

tan 6 = od) as E->-0 (8.20) 

Use of (8.20) in (8.14) gives: 

*lxtan a - *.„ =0 on body (8.21) 

It is thus shown that the second-order inner boundary- 

value problem has exactly the same form as given in section 

IV. 3. The solution is thus given by (4.31) and (4.37). 

VIII. 5. General-Shape Planing Surface with Curve in the 

Spanwise Direction 

Previous sections show that the boundary-value problem 

for V-shape planing surface has exactly the same form as 

for the planing plate. 

Now consider the general-shape planing surface given by 

the equation 

y = xtan a + S(z) (8.22) 
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Equation (8.22) implies that there is no camber in the 

longitudinal direction. 

Next, it is to be shown that the theory up to the second- 

order solution presented in the previous chapter can be 

carried over directly to this general shape planing surface, 

with curve in the spanwise direction. In order to show 

this, it is sufficient to show that the body condition up 

to the second-order solution has the same form as given for 

the planing plate. 

The body boundary condition gives: 

4^ = 0 = * tan a - -I + (fr S 8n      x       y   z z 
on y=xtan a+S(z) 

(8.23) 

Let N denote a unit: vector lying in a cross-section 

plane, z= constant, the vector being normal to the contour 

of the section cut by the plane. Then the body boundary 

condition can be re-written 

w=  tan ^ Vy 
3N 7, 1+tan a 

al = .    
z z 

A 

(8.24a) 

on y=xtan a+S(z)  ,8 24b. 

In terms of inner variables, the left-hand side is 0(|-), 

because of the differentiation; the right-hand side is 

0(e4)) since S is 0 (e) . 
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Let the solution have the inner expansion 

N 
*(xfy,Z) ^ Z  * (X,Y;Z;e) 

n=0 n 

where * ^,=o{$ )        as e-^0 for fixed X,Y,Z     (8.25) n+i   n 

If (8.25) is substituted into (8.24b), the body condition 

is clearly, 

3*0 ■j— =0 on body (8.26) 

To the second-order, it is noted that $.=0(1). The left- 

hand side is O(-) while right-hand side is 0(e). Clearly, 

3*. 
■r—i- =0 on body (8.27) 

Therefore, to the second-order inner solution, the body 

condition only depends on X and Y explicitly at a constant 

z-plane. 

The theory developed for the planing plate can thus be 

applied directly to the general shape high-aspect-ratio 

planing surface with curve in the spanwise direction. 



IX COKCLUSIOK 

ft hitjh-aspect-ratio planing suiface is investigated 

by the use of notched asymptotic expansions. A three 

dimensional effoct is shown to provide a height ref-^ence 

for the pianino susface so that the location of the planing 

suirtace is uniquely defined with respect to the undisturbed 

free surface, the numerical solution is presented in 

Chapter six. 

In the present theory, it is assumed that the chord 

length distribution and its first derivative with respect 

to the span are continuous at the tip as elsewhere. The 

cusp shape distribution does satisfy those requirements* 

However, for practical applications it is desired to 

include a rectanqulsr plate or elliptic-shape distribution. 

The last two shapes obviously violate the assumption of 

continuous first derivative at the tip. Prom analogies 

in aerodynamics, it is  believed that the ti^ effect is 

only a local phenomenon, at least for the elliptic-shape 

chord distribution. Thus the theory presented here for 

elliptic-shape should provide a valid result through the 

whole span except in a very small neighborhood of the tips. 

Observation seems to confirm this statement even for a 

rectangular plate.  If the tip effect were shown to be 

28 significant, a tip correction as suggested by Van Dyke 
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might be applied. 

In order to obtain a unique second-order solution, it 

is necessary to obtain a third-order outer solution; matching 

to the near-field and far-field free-surface elevations 

provides an equation relating the depth of submergence and 

the unknown second-order-problem parameters, unfortunately, 

due to a mathematical difficulty, the inner limit of the 

third-order outer free-surface solution is not obtained in 

the present work. However, the method of solution is 

presented in Chapter seven. 

The bottom of the planing surface is assumed to be 

flat through the first seven chapters. In Chapter eight, 

this restriction is relaxed to include a V-shape planing 

surface. To the first order, the present theory is 

applicable for arbitrary angle of deadrise. However, in 

the second-order solution, it is implicitly assumed that 

the deadrise angle is small. 

Throughout ehe whole analysis, it is assumed that 

there is no camber in the longitudinal direction so that 

the classic hodograph method is applicable to obtain the 

inner solution. This restriction can also be relaxed in 

15 the manner as given by Wu. 

Gravity is neglected in the present theory by assuming 

a high speed planing surface with no wave behind it.  In 

case the resistance of the planing surface is sought, 
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energy which is carried away by waves must be taken into 

account.  To do this, Froude number must be considered. 

There will be two small parameters; one is the inverse of 

large aspect-ratio and the other is the inverse of large 

Froude number.  To handle two parameters at the same time, 

33 the method developed by Ogilvie  may be applicable so 

that the gravity effect can be included. 
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APPENDIX A 

RELATIONSHIP BETWEEN Z-And C-PLANES 

A. 1. To the First-Order Parameters 

Equation (3.17) gives an expression between the physical 

Z-plane and the complex ^-plane for any value of ^. To 

perform the matching, only the outer limit is required for 

the inner solution. It is shown in section III. 3. that Z 

and c correspond to within a real scale factor far away from 

the planing surface. The right hand side of equation (3.17) 

can thus be expanded in terms of large £ to give: 

Z ^ A0e"
ia{(-c0+ /l-c0

2)c + logc(l+c0b0-*b0/l-c0
2) 

-t/l-c0
2(b0log2 + ^0

2-l.log(b0-^
2-l)) - c0 

- (l+c0b0).log (l+b0)} + 0(1) (A-l) 

Next, express J; in terms of large Z. 

tot P
4-
" 1 / 5" 

A0(-c0+iA-c7)    (-c0+^c0
2) 

•log ? -tA^^tb0log 2 + v'bg2-! log (b0-^^l)] 

- cn - (l+cnbn) log (l+bn)} + 0(i) (A-2) 0   v" "O 0 

where An = _ ;. . ^ v 0  w (b0+c0) 

Now, take logarithm on both sides of equation (A-2) and 
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note that log j C i =o(U j). Equation (A-2) becomes: 

{. ^ J   ■■  Z + O(log Z) 
A0(-V;/l-c0 ) ^3, 

If (A-3) is applied, first-order velocity potential 

matching gives: 

c0 = - cos a (A-4) 

Substitute (A-4) into (A-l) to give: 

Z a A0; + A0(e'
2'a -b0) log T, 

+ A0e'
ia(M0 - iR0) + ü(|)    for large C   (A-5) 

where 

M0 = c0 - (l+b0c0) log (l+b0) 

R0 = b0/l-c0
2 -log 2 + ^0

2-l-/l-c0
2'log (b0-^

2-l) 

(A-6) 

Express c in terms of Z, one obtains the two-term outer 

limit of one-term inner solution for £ in terms of Z: 

^h0-   U'^-V-log^- (M0 - iR0)e--+ 0(i) 

(A-7) 

where A0 is real and positive. 

A. 2. To the Second-Order Parameters 
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Equation (4.37) gives an expression between the Z-plane 

and the c-plane for any value of £. Following the same 

procedure given in Section A.l, after a long and tedious 

algebraic manipulation, one obtains the two-term outer limit 

of the two-term inner solution for Z in terms of c in equation 

(4.39a}, and c in terms of Z in equation (4.39c); and the 

three-term outer limit of the two-term inner solution for Z 

in terms of c in equation (7.21), and C in terms of Z to three- 

term in equation (7.23). 



APPENDIX B 

To show that in the wake region, the density of doublets 

Y(x,2) is a function of z only. 

In the wake, the velocity potential 4» is 

■ *w o   l(x-c)2+y2+(2-02l3/2      (B-l) 

Let S represents the area of this integration. Next,consider 

this surface integral into two parts. Let 

S = S* + S' (B-2) 

where S represents all the surface area in (B-l) except at 

a small circle of radius r with center at (x,0,z) and S' 

represents the area in this small circle. 

JJs*   JJs'     Kx-O +y +(z- 02]3/2     (B-3) 

Consider the first integration S , since there is no singu- 

larities in the intergrand, this integral approaches zero 

as y approaches zero.  Next, consider the integral in the 

small circle. When the radius r approaches zero, the area 

shrinks to a point.  The density y  inside this small circle 

can be considered to be constant. 
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r*0     JJg.tCx-O^+y^+Cz-i C, J        (B-4) 

The surface integral is shown to be zero if the area of 

small circle S' is excluded. Therefore, the surface of 

integration {B-4) can be extended to infinity to give: 

^<x,z./j[;—*^ 
-«   [{x-C)2+y2+(2-02]3/2 

Integration gives: 

'v i Y(X,Z) sgn y as y->-±0 (B-5) 

Equation (4.2") gives 

(j) {x,y,z) =0 on y=0 (B-6) 

From equations (B-5) and (B-6;, one obtains: 

Y (x,z) = 0 on y=0 

so 

Y = Y(z) on y=0 (B-7) 



APPENDIX C 

To obtain the inner limit of outer solution ia^1 • 

the two-term outer solution is given in equation (4.11). 

In order to obtain the inner limit for this outer solution, 

this solution must be evaluated near the line of singularities 

and the equation becomes divergent integral. To avoid this 

difficulty, the method of integration by parts is used. Note 

that the strength of singularities is zero outside the planing 

body. 

YjU) = p1(z) = Xjjz) =0 at z=+l,-l  (C-l) 

Then equations (4.11) becomes: 

V*l ^ ^ - hf]   t^tk + tan-^^SS^n 

+ 1        x     f1 (z-C) dXl dr + 4~ ~TT/      :  i    i, ,2,1/2 '"d? dC 

xSy^J.j^ [x^+y^Cz-c)   1   ' ^ (C-2) 

Take the inner variables in (C-2) to give: 

<f'0+<{>1 ^   (eX-eHcot a)   - i^(eY+eH) 
J-la!   z-r 

+  w ^^S T^l'2' ,7T     (eX-eHcot a)   +(eY+eH) L 
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+ --.  . 2X-(2) ♦ o{€Y,) 
" {eX-eHcot a>^+(eY+eH)z     *■ 

If equation (4.10) is used, one obtains: 

♦o+*l ^ <eX-eHcot a) " ^UY+cH)* ^~- -  |^ 
Y1<Z>   -1,  £Y^eH > 

2* tan leX-eHcot a' 
.  (cY+€H)y1(Z)+(eX-eHcot a)X1(Z) 

+ ±-« * = 5—±  + oUX.) 
z   (eX-eHcot a)z+(eY+eH)z ^ 

(C-3) 



APPENDIX D 

To show that equation (5.16) gives; 

1  fldlrl(c)  1   /x^d-c)1 

Let S =s+w represents the area of the planing surface 

and the wake. The second-order velocity potential is 

1      ff yYiUrO 
4l1 Jjs.l{x-U2+y2+{z-C)2l3/2 (D-l) 

Let R =  [(x-C)2 + y2 +  (2-C)2l1/2 (D-2) 

Then equation (D-l) becomes: 

Next, differentiate 4», with respect to y. 

♦ly'x'="^=-feJJfii^l'«^'^'5'«^ 

dc 
(D-3) 

Next, apply the method of integration by parts in equation 

(D-3) to give: 
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lr • *Y 1. 3 .1, 
^'ar ^ 

tYl  3 1 

Next, change the order öf integration cu-J perform the 

integration by parts again to give: 

*ly(x'y'z) s 
z-4) 
2+y2lR 

dC'dc 

1 f1 3Y1   Z-C 

In Appendix B, it shows that 

Y(x,z) » Y(Z) 

Y.x,z) = 0 

in the wake region 

in front of the planing surface 

Then, the strength of singularities can be represented by 

y(x,z)   = Y(Z)-H(0) 

where H(0) is the heaveside function. 

|X- = Y(Z)-MO) 

Therefore, ^-^^(O) (D-5) 



123 

Substitute equation (0^5) injo equation (D-4) to give: 

v,v(x,y,z) = - i^f ^Mf' 6(0) &&$=$   .K 

uzs)    +r 6(0)<^M^q   dadc 
^{Z-K)      JO Iy^+(z-C)ZlR y 

1    f  dYlr      x(z-C)[x2^2y2^(2-'C)2l 
" " ^ ^SxV)(y^(2.I)VxV+(2-c)i, 

+ -^SLS _)dt 
y%(2-5) CD~6) 

Now,  the integrand in equation  (D-6)  is well defined, so 

♦ly(x,0,z)   - - ^    tr^iZlf    + 1Pc1aC       (0-7) 

where Cauchy Principal Value is taken. 
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